Solveeit Logo

Question

Question: If the function \(f\left( x \right)\) defined by \(f\left( x \right) = \dfrac{{{x^{100}}}}{{100}} + ...

If the function f(x)f\left( x \right) defined by f(x)=x100100+x9999+.....+x22+x+1f\left( x \right) = \dfrac{{{x^{100}}}}{{100}} + \dfrac{{{x^{99}}}}{{99}} + ..... + \dfrac{{{x^2}}}{2} + x + 1 , then f(0)=f'\left( 0 \right) =
A) 100f(0)100f'\left( 0 \right)
B) 1
C) 100
D) None of these

Explanation

Solution

The function f(x)f\left( x \right) is defined by f(x)=x100100+x9999+.....+x22+x+1f\left( x \right) = \dfrac{{{x^{100}}}}{{100}} + \dfrac{{{x^{99}}}}{{99}} + ..... + \dfrac{{{x^2}}}{2} + x + 1.
To find the value of f(0)f'\left( 0 \right) , firstly find the value of f(x)f'\left( x \right).
After that, substitute x=0x = {\text{0}} , in the value of f(x)f'\left( x \right).
Thus, find the value of f(0)f'\left( 0 \right).

Complete step by step solution:
Here, the function f(x)=x100100+x9999+.....+x22+x+1f\left( x \right) = \dfrac{{{x^{100}}}}{{100}} + \dfrac{{{x^{99}}}}{{99}} + ..... + \dfrac{{{x^2}}}{2} + x + 1 .
We are asked to find the value of f(0)f'\left( 0 \right) .
To find the value of f(0)f'\left( 0 \right) , we firstly need to find the value of f(x)f'\left( x \right) .

ddxf(x)=ddx(x100100+x9999+.....+x22+x+1) f(x)=ddx(x100100)+ddx(x9999)+.....+ddx(x22)+ddx(x)+ddx(1) f(x)=100x1001100+99x99199+.....+2x212+1+0 f(x)=x99+x98+.....+x+1  \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{{x^{100}}}}{{100}} + \dfrac{{{x^{99}}}}{{99}} + ..... + \dfrac{{{x^2}}}{2} + x + 1} \right) \\\ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{{x^{100}}}}{{100}}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{{{x^{99}}}}{{99}}} \right) + ..... + \dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 1 \right) \\\ \Rightarrow f'\left( x \right) = \dfrac{{100{x^{100 - 1}}}}{{100}} + \dfrac{{99{x^{99 - 1}}}}{{99}} + ..... + \dfrac{{2{x^{2 - 1}}}}{2} + 1 + 0 \\\ \Rightarrow f'\left( x \right) = {x^{99}} + {x^{98}} + ..... + x + 1 \\\

Thus, we get f(x)=x99+x98+.....+x+1f'\left( x \right) = {x^{99}} + {x^{98}} + ..... + x + 1 .
Now, to get the value of f(0)f'\left( 0 \right) , by substituting x=0x = 0 , in f(x)f'\left( x \right) .
f(0)=(0)99+(0)98+.....+0+1\Rightarrow f'\left( 0 \right) = {\left( 0 \right)^{99}} + {\left( 0 \right)^{98}} + ..... + 0 + 1
=0+0+......+0+1 =1= 0 + 0 + ...... + 0 + 1 \\\ =1

Hence, f(0)=1f'\left( 0 \right) = 1 .
So, option (B) is correct.

Note:
Here, students should understand the question properly and then carry forward to solve it to avoid mistakes. The differentiation of each and every step must be done carefully and proceed step-wise.
Also, the substitution of x=0x = 0, must be done carefully in f(x)f'\left( x \right), to get the required answer without any error in it.