Solveeit Logo

Question

Question: If the function \[f:\left[ {1,\infty } \right) \to \left[ {1,\infty } \right)\] is defined by \[f\le...

If the function f:[1,)[1,)f:\left[ {1,\infty } \right) \to \left[ {1,\infty } \right) is defined by f(x)=2x(x1)    f\left( x \right) = {2^{x\left( {x - 1} \right)}}\;\;is invertible, then f1(x)  {f^{ - 1}}\left( x \right)\; is

Explanation

Solution

Here first we will let the given function to be y and then take log of both the sides and find the value of x in terms of y to get the value of f1(y)  {f^{ - 1}}\left( y \right)\;. Then we will replace y by x to get the desired answer.

Complete step-by-step answer:
Let f(x)=yf\left( x \right) = y
Then,
  x=f1(y)\;x = {f^{ - 1}}\left( y \right)………………………………..(1)
Also,
y=2x(x1)  y = {2^{x\left( {x - 1} \right)}}\;
Now taking log of the sides using the formula:-
log(ab)=bloga\log \left( {{a^b}} \right) = b\log a
We get:-
logy=x(x1).log2\log y = x\left( {x - 1} \right).\log 2
Now we will solve the above equation for the value of x:

logy=(x2x)log2 logy=x2log2xlog2 x2log2xlog2logy=0.......................(2)  \log y = \left( {{x^2} - x} \right)\log 2 \\\ \log y = {x^2}\log 2 - x\log 2 \\\ {x^2}\log 2 - x\log 2 - \log y = 0.......................\left( 2 \right) \\\

Now, since a quadratic equation is formed , therefore we will use the quadratic formula to find the value of x.
For any quadratic equation of the form ax2+bx+c=0a{x^2} + bx + c = 0 the quadratic formula is given by:
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Comparing equation 2 with the standard equation we get:-

a=log2 b=log2 c=logy  a = \log 2 \\\ b = - \log 2 \\\ c = - \log y \\\

Hence applying quadratic formula for these values we get:-

x=(log2)±(log2)24(log2)(logy)2(log2) x=log2±log22+4log2.logy2log2  x = \dfrac{{ - \left( { - \log 2} \right) \pm \sqrt {{{\left( { - \log 2} \right)}^2} - 4\left( {\log 2} \right)\left( { - \log y} \right)} }}{{2\left( {\log 2} \right)}} \\\ x = \dfrac{{\log 2 \pm \sqrt {{{\log }^2}2 + 4\log 2.\log y} }}{{2\log 2}} \\\

Now taking log2\log 2 common from both the numerator and the denominator we get:-

x=log2[1±1+4(logylog2)]2log2 x=[1±1+4(logylog2)]2  x = \dfrac{{\log 2\left[ {1 \pm \sqrt {1 + 4\left( {\dfrac{{\log y}}{{\log 2}}} \right)} } \right]}}{{2\log 2}} \\\ x = \dfrac{{\left[ {1 \pm \sqrt {1 + 4\left( {\dfrac{{\log y}}{{\log 2}}} \right)} } \right]}}{2} \\\

Now we will use the following property of log:-
logealogeb=logbalogbb\dfrac{{\log ea}}{{\log eb}} = \dfrac{{\log ba}}{{\log bb}}
Now since, logbb=1\log bb = 1
Therefore,
logealogeb=logba\dfrac{{\log ea}}{{\log eb}} = \log ba
Hence applying this property we get:-
x=1±1+4log2y2x = \dfrac{{1 \pm \sqrt {1 + 4\log 2y} }}{2}
Now since, x[1,)x \in \left[ {1,\infty } \right) therefore, ‘-ve’ sign can be omitted
Hence we get:-
x=1+1+4log2y2x = \dfrac{{1 + \sqrt {1 + 4\log 2y} }}{2}
Now putting this value in equation (1) we get:-
f1(y)=1+1+4log2y2{f^{ - 1}}\left( y \right) = \dfrac{{1 + \sqrt {1 + 4\log 2y} }}{2}
Replacing y by x we get:-
f1(x)=1+1+4log2x2{f^{ - 1}}\left( x \right) = \dfrac{{1 + \sqrt {1 + 4\log 2x} }}{2}

Note: The quantity inside the logarithm function can never be zero as logarithm function is not defined at zero
Also, the logarithm function is a strictly increasing function.
Any function f is invertible if and only if it is one – one and onto and if it is invertible then only we can find its inverse