Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

If the function f:(,1](a,b)f : (-\infty, -1] \rightarrow (a, b) defined by f(x)=ex33x+1f(x) = e^{x^3 - 3x + 1} is one-one and onto, then the distance of the point P(2b+4,a+2)P(2b + 4, a + 2) from the line x+e3y=4x + e^{-3} y = 4 is:

A

21+e62 \sqrt{1 + e^6}

B

41+e64 \sqrt{1 + e^6}

C

31+e63 \sqrt{1 + e^6}

D

1+e6\sqrt{1 + e^6}

Answer

21+e62 \sqrt{1 + e^6}

Explanation

Solution

Analyze the function f(x)=ex33x+1f(x) = e^{x^3 - 3x + 1}. To determine if f(x)f(x) is one-one, we need to check if f(x)f(x) is strictly increasing or decreasing. Calculate the derivative f(x)f'(x):

f(x)=ex33x+1(3x23)f'(x) = e^{x^3 - 3x + 1} \cdot (3x^2 - 3) =ex33x+13(x21)= e^{x^3 - 3x + 1} \cdot 3(x^2 - 1) =ex33x+13(x1)(x+1)= e^{x^3 - 3x + 1} \cdot 3(x - 1)(x + 1)

Since ex33x+1>0e^{x^3 - 3x + 1} > 0 for all x(,1]x \in (-\infty, -1], the sign of f(x)f'(x) depends on (x1)(x+1)(x - 1)(x + 1). For x1x \leq -1, f(x)0f'(x) \geq 0, indicating that f(x)f(x) is an increasing function on (,1](-\infty, -1]. Thus, f(x)f(x) is one-one.

Determine the range of f(x)f(x). Since f(x)f(x) is one-one and increasing:

As xx \to -\infty, x33x+1x^3 - 3x + 1 \to -\infty, so f(x)0f(x) \to 0. At x=1x = -1,

f(1)=e(1)33(1)+1=e1+3+1=e3.f(-1) = e^{(-1)^3 - 3(-1) + 1} = e^{1 + 3 + 1} = e^3.

Thus, a=0a = 0 and b=e3b = e^3, so the range of f(x)f(x) is (0,e3](0, e^3].

Define point PP and line equation. The point PP is given by P(2b+4,0+2)P(2b + 4, 0 + 2). Substitute a=0a = 0 and b=e3b = e^3:

P=(2e3+4,0+2)=(2e3+4,2).P = (2e^3 + 4, 0 + 2) = (2e^3 + 4, 2).

The line equation is:

x+e3y=4x + e^{-3}y = 4

Find the distance from PP to the line. The distance dd from a point (x1,y1)(x_1, y_1) to a line Ax+By+C=0Ax + By + C = 0 is given by:

d=Ax1+By1+CA2+B2d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}

Rewrite the line equation in standard form:

x+e3y4=0x + e^{-3}y - 4 = 0

Here, A=1A = 1, B=e3B = e^{-3}, C=4C = -4, and (x1,y1)=(2e3+4,2)(x_1, y_1) = (2e^3 + 4, 2).

Substitute these values into the distance formula:

d=1(2e3+4)+e32412+(e3)2d = \frac{|1 \cdot (2e^3 + 4) + e^{-3} \cdot 2 - 4|}{\sqrt{1^2 + (e^{-3})^2}} =2e3+4+2e341+e6= \frac{|2e^3 + 4 + 2e^{-3} - 4|}{\sqrt{1 + e^{-6}}} =2(e3+e3)1+e6= \frac{2(e^3 + e^{-3})}{\sqrt{1 + e^{-6}}}

Multiply the numerator and the denominator by e3e^3 to simplify:

=2(e6+1)e6(1+e6)=2(e6+1)e6+1=21+e6= \frac{2(e^6 + 1)}{\sqrt{e^6(1 + e^{-6})}} = \frac{2(e^6 + 1)}{\sqrt{e^6 + 1}} = 2\sqrt{1 + e^6}