Question
Question: If the function \(f\) defined as \(f(x) = \dfrac{1}{x} - \dfrac{{k - 1}}{{{e^{2x}} - 1}},{\text{ }}x...
If the function f defined as f(x)=x1−e2x−1k−1, x=0, is continuous at x=0, then the ordered pair (k,f(0)) is equal to?
A) (3,1)
B) (3,2)
C) (31,2)
D) (2,1)
Solution
In the above question we are given a function continuous at x=0 and we have to find value of (k,f(0)), that is in short we have to find value of k and f(0). Now in order to solve the question use the fact given in question that function continuous at x=0, by using definition of continuity of any function at a point.Let a function g(x) be continuous at x=a, if
g(a+)=g(a)=g(a−), where g(a+)=h→0limg(a+h) and g(a−)=h→0limg(a−h).
So, using this we can easily find the required values.
Complete step-by-step answer:
We are given a function f(x)=x1−e2x−1k−1, x=0 …………….(1)
which is continuous at x=0.
So here the question is giving us an idea about continuity of the function at x=0.
So now we will consider the definition of continuity.
Let a function g(x) be continuous at x=a, if
g(a+)=g(a)=g(a−), where g(a+)=h→0limg(a+h) and g(a−)=h→0limg(a−h) …………….(2)
Now we are given function f(x) which is continuous at x=0 so now using definition of continuity from (2), we get,
f(0+)=f(0)=f(0−), where f(0+)=h→0limf(0+h) and f(0−)=h→0limf(0−h) …………….(3)
Firstly, lets find the value of f(0−) using (3), we get,
Therefore, f(0+)=h→0lim0+h1−e2(0+h)−1k−1
Now further simplifying, we get,
f(0+)=h→0limh1−e2h−1k−1
Now taking L.C.M, we get,
f(0+)=h→0lim(h)(e2h−1)e2h−1−(k−1)(h)
f(0+)=h→0lim(h)(e2h−1)e2h−1−kh+h …………….(4)
Now we how the series expansion for ex is,
{e^x} = 1 + x + \dfrac{{{x^2}}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{{x^3}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{{x^4}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_, where \left| \\!{\underline {\,
n \,}} \right. = 1 \times 2 \times 3 \times 4 \times \\_\\_\\_ \times n
Hence using the above formula, we can get value of eh, so we get
{e^h} = 1 + x + \dfrac{{{h^2}}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{{h^3}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{{h^4}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_
Now according to (4), we need e2h, so we will get,
{e^{2h}} = 1 + 2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_ …………….(5)
Now, substituting value of e−2h from (5) in (4), we get,
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {1 + 2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right) - 1 - kh + h}}{{(h)\left\\{ {\left( {1 + 2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right) - 1} \right\\}}} \\\
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right) - kh + h}}{{(h)\left\\{ {\left( {2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)} \right\\}}} \\\
Now taking h common from numerator.
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left\\{ {\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right) - k + 1} \right\\}}}{{(h)\left\\{ {\left( {2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)} \right\\}}}
Now cancelling h from numerator and denominator we get,
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right) - k}}{{\left( {2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)}}
Now taking h common from denominator we get
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right) - k}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)}} …………….(6)
Now for this limit to exist h present in denominator must be cancelled, and to cancel it, we know 3−k=0 and then we can take h common from numerator and cancel it with h present in denominator.
So, from this we can get value of k-
3−k=0 ⇒k=3 …………….(7)
Now considering (6) and substituting value of k from (7) in it, we get,
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right) - 3}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)}} \\\
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)}} \\\
Now taking h common from numerator and cancelling it with h in denominator, we get,
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{(h)\left( {\dfrac{4}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8h}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^2}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)}} \\\
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{4}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8h}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^2}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)}}{{\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\,
2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\,
3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\,
4 \,}} \right. }} + \\_\\_\\_} \right)}} \\\
Now simply solving the limit h→0, we get,
f(0+)=2∣!24
Now using ∣!2=1×2=2, we get,
f(0+)=224 f(0+)=44 f(0+)=1 …………….(8)
Now using definition of continuity for f, we have
f(0+)=f(0)=f(0−)
So, we can write that using (8),
f(0+)=f(0)=1
Hence f(0)=1 …………….(9)
Now from (7) and (9), we have,
k=3 and f(0)=1 …………….(10)
Now according to question, we have to find the ordered pair (k,f(0))
Now substituting values of k and f(0) from (10) in ordered pair we get-
(k,f(0))≡(3,1)
So, the correct answer is “Option A”.
Note: In the above question to find the values of k and f(0) we used f(0+), but if we use f(0−) there will be no change in the answers. Therefore, we can use f(0+) as well as f(0−).
We can also use another method to solve limit in (4)
f(0+)=h→0lim(h)(e2h−1)e2h−1−kh+h
As we can clearly see for x→0,(h)(e2h−1)e2h−1−kh+h→00
So, it is indeterminate form 00, and we can use L hospital rule.
L hospital rule states that
x→0limn(x)m(x)=x→0limdxdn(x)dxdm(x), where m(x)→0,n(x)→0 for x→0
Therefore, we can now easily find k and f(0), using L hospital rule for (4).