Solveeit Logo

Question

Question: If the function \(f\) defined as \(f(x) = \dfrac{1}{x} - \dfrac{{k - 1}}{{{e^{2x}} - 1}},{\text{ }}x...

If the function ff defined as f(x)=1xk1e2x1, x0f(x) = \dfrac{1}{x} - \dfrac{{k - 1}}{{{e^{2x}} - 1}},{\text{ }}x \ne 0, is continuous at x=0x = 0, then the ordered pair (k,f(0))(k,f(0)) is equal to?
A) (3,1)\left( {3,1} \right)
B) (3,2)\left( {3,2} \right)
C) (13,2)\left( {\dfrac{1}{3},2} \right)
D) (2,1)\left( {2,1} \right)

Explanation

Solution

In the above question we are given a function continuous at x=0x = 0 and we have to find value of (k,f(0))(k,f(0)), that is in short we have to find value of k and f(0)k{\text{ and }}f(0). Now in order to solve the question use the fact given in question that function continuous at x=0x = 0, by using definition of continuity of any function at a point.Let a function g(x)g(x) be continuous at x=ax = a, if
g(a+)=g(a)=g(a)g(a + ) = g(a) = g(a - ), where g(a+)=limh0g(a+h) and g(a)=limh0g(ah)g(a + ) = \mathop {\lim }\limits_{h \to 0} g(a + h){\text{ and }}g(a - ) = \mathop {\lim }\limits_{h \to 0} g(a - h).
So, using this we can easily find the required values.

Complete step-by-step answer:
We are given a function f(x)=1xk1e2x1, x0f(x) = \dfrac{1}{x} - \dfrac{{k - 1}}{{{e^{2x}} - 1}},{\text{ }}x \ne 0 …………….(1)
which is continuous at x=0x = 0.
So here the question is giving us an idea about continuity of the function at x=0x = 0.
So now we will consider the definition of continuity.
Let a function g(x)g(x) be continuous at x=ax = a, if
g(a+)=g(a)=g(a)g(a + ) = g(a) = g(a - ), where g(a+)=limh0g(a+h) and g(a)=limh0g(ah)g(a + ) = \mathop {\lim }\limits_{h \to 0} g(a + h){\text{ and }}g(a - ) = \mathop {\lim }\limits_{h \to 0} g(a - h) …………….(2)
Now we are given function f(x)f(x) which is continuous at x=0x = 0 so now using definition of continuity from (2), we get,
f(0+)=f(0)=f(0)f(0 + ) = f(0) = f(0 - ), where f(0+)=limh0f(0+h) and f(0)=limh0f(0h)f(0 + ) = \mathop {\lim }\limits_{h \to 0} f(0 + h){\text{ and }}f(0 - ) = \mathop {\lim }\limits_{h \to 0} f(0 - h) …………….(3)
Firstly, lets find the value of f(0)f(0 - ) using (3), we get,
Therefore, f(0+)=limh010+hk1e2(0+h)1f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{0 + h}} - \dfrac{{k - 1}}{{{e^{2(0 + h)}} - 1}}
Now further simplifying, we get,
f(0+)=limh01hk1e2h1f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{h} - \dfrac{{k - 1}}{{{e^{2h}} - 1}}
Now taking L.C.M, we get,
f(0+)=limh0e2h1(k1)(h)(h)(e2h1)f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2h}} - 1 - (k - 1)(h)}}{{(h)({e^{2h}} - 1)}}
f(0+)=limh0e2h1kh+h(h)(e2h1)f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2h}} - 1 - kh + h}}{{(h)({e^{2h}} - 1)}} …………….(4)
Now we how the series expansion for ex{e^x} is,
{e^x} = 1 + x + \dfrac{{{x^2}}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{{x^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{{x^4}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_, where \left| \\!{\underline {\, n \,}} \right. = 1 \times 2 \times 3 \times 4 \times \\_\\_\\_ \times n
Hence using the above formula, we can get value of eh{e^h}, so we get
{e^h} = 1 + x + \dfrac{{{h^2}}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{{h^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{{h^4}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_
Now according to (4), we need e2h{e^{2h}}, so we will get,
{e^{2h}} = 1 + 2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_ …………….(5)
Now, substituting value of e2h{e^{ - 2h}} from (5) in (4), we get,
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {1 + 2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right) - 1 - kh + h}}{{(h)\left\\{ {\left( {1 + 2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right) - 1} \right\\}}} \\\ f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right) - kh + h}}{{(h)\left\\{ {\left( {2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)} \right\\}}} \\\
Now taking hh common from numerator.
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left\\{ {\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right) - k + 1} \right\\}}}{{(h)\left\\{ {\left( {2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)} \right\\}}}
Now cancelling hh from numerator and denominator we get,
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right) - k}}{{\left( {2h + \dfrac{{4{h^2}}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^4}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)}}
Now taking hh common from denominator we get
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right) - k}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)}} …………….(6)
Now for this limit to exist hh present in denominator must be cancelled, and to cancel it, we know 3k=03 - k = 0 and then we can take hh common from numerator and cancel it with hh present in denominator.
So, from this we can get value of kk-
3k=0 k=3  3 - k = 0 \\\ \Rightarrow k = 3 \\\ …………….(7)
Now considering (6) and substituting value of kk from (7) in it, we get,
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {3 + \dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right) - 3}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)}} \\\ f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)}} \\\
Now taking hh common from numerator and cancelling it with hh in denominator, we get,
f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{(h)\left( {\dfrac{4}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8h}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^2}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)}}{{(h)\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)}} \\\ f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\dfrac{4}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8h}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^2}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)}}{{\left( {2 + \dfrac{{4h}}{{\left| \\!{\underline {\, 2 \,}} \right. }} + \dfrac{{8{h^2}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{16{h^3}}}{{\left| \\!{\underline {\, 4 \,}} \right. }} + \\_\\_\\_} \right)}} \\\
Now simply solving the limit h0h \to 0, we get,
f(0+)=4!22f(0 + ) = \dfrac{{\dfrac{4}{{\left| \\!{\underline {\, 2 \,}} \right. }}}}{2}
Now using !2=1×2=2\left| \\!{\underline {\, 2 \,}} \right. = 1 \times 2 = 2, we get,
f(0+)=422 f(0+)=44 f(0+)=1  f(0 + ) = \dfrac{{\dfrac{4}{2}}}{2} \\\ f(0 + ) = \dfrac{4}{4} \\\ f(0 + ) = 1 \\\ …………….(8)
Now using definition of continuity for ff, we have
f(0+)=f(0)=f(0)f(0 + ) = f(0) = f(0 - )
So, we can write that using (8),
f(0+)=f(0)=1f(0 + ) = f(0) = 1
Hence f(0)=1f(0) = 1 …………….(9)
Now from (7) and (9), we have,
k=3 and f(0)=1k = 3{\text{ and }}f(0) = 1 …………….(10)
Now according to question, we have to find the ordered pair (k,f(0))\left( {k,f(0)} \right)
Now substituting values of k and f(0)k{\text{ and }}f(0) from (10) in ordered pair we get-
(k,f(0))(3,1)\left( {k,f(0)} \right) \equiv \left( {3,1} \right)

So, the correct answer is “Option A”.

Note: In the above question to find the values of k and f(0)k{\text{ and }}f(0) we used f(0+)f(0 + ), but if we use f(0)f(0 - ) there will be no change in the answers. Therefore, we can use f(0+) as well as f(0)f(0 + ){\text{ as well as }}f(0 - ).
We can also use another method to solve limit in (4)
f(0+)=limh0e2h1kh+h(h)(e2h1)f(0 + ) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{2h}} - 1 - kh + h}}{{(h)({e^{2h}} - 1)}}
As we can clearly see for x0,e2h1kh+h(h)(e2h1)00x \to 0,\dfrac{{{e^{2h}} - 1 - kh + h}}{{(h)({e^{2h}} - 1)}} \to \dfrac{0}{0}
So, it is indeterminate form 00\dfrac{0}{0}, and we can use L hospital rule.
L hospital rule states that
limx0m(x)n(x)=limx0dm(x)dxdn(x)dx\mathop {\lim }\limits_{x \to 0} \dfrac{{m(x)}}{{n(x)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{dm(x)}}{{dx}}}}{{\dfrac{{dn(x)}}{{dx}}}}, where m(x)0,n(x)0 for x0m(x) \to 0,n(x) \to 0{\text{ for }}x \to 0
Therefore, we can now easily find k and f(0)k{\text{ and }}f(0), using L hospital rule for (4).