Solveeit Logo

Question

Question: If the fourth term in the expansion of \({{\left( \sqrt{{{x}^{\dfrac{1}{\log x+1}}}}+{{x}^{\dfrac{1}...

If the fourth term in the expansion of (x1logx+1+x112)6{{\left( \sqrt{{{x}^{\dfrac{1}{\log x+1}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}} is equal to 200200 and x>1x>1 , then xx is
A. 1010
B. 104{{10}^{-4}}
C. 11
D. 4-4

Explanation

Solution

Hint: T4{{T}_{4}} is given. Solve it as T3+1{{T}_{3+1}} you will get the value of xx. Use T3+1{{T}_{3+1}} as (r+1)th{{(r+1)}^{th}} term and solve it.

Complete step by step answer:
So from the above question we got to know that the value of T4{{T}_{4}} is given i.e. 200200 . We have to find the value of xx . So for finding the value of xx We have to use the (r+1)th{{(r+1)}^{th}} term which is given below.
So T4=200{{T}_{4}}=200 ……….. (1)
So if we take a (a+b)n{{(a+b)}^{n}} ,
We know we get the value of Tr+1{{T}_{r+1}} ,
So the value of Tr+1{{T}_{r+1}} is as follows,
i.e Tr+1=ncranrbr{{T}_{r+1}}{{=}^{n}}{{c}_{r}}{{a}^{n-r}}{{b}^{r}} …………. (So this is (r+1)th{{(r+1)}^{th}} term)…….. (2)
So here a=x1logx+1a=\sqrt{{{x}^{\dfrac{1}{\log x+1}}}} and b=x112b={{x}^{\dfrac{1}{12}}} ………… (3)
So from (1) i.e. T4{{T}_{4}} we can write it as,
T3+1=200{{T}_{3+1}}=200 ….. (4)
Where we get r=3,r=3,
So we have to apply this (r+1)th{{(r+1)}^{th}} term, So applying it we it as follows,
So from (2), (3) and (4), We get,
T3+1=6c3[x1logx+1](63)(x112)3=200{{T}_{3+1}}{{=}^{6}}{{c}_{3}}{{\left[ \sqrt{{{x}^{\dfrac{1}{\log x+1}}}} \right]}^{(6-3)}}{{({{x}^{\dfrac{1}{12}}})}^{3}}=200
So simplifying we get,
6×5×43×2×1[x1logx+1](3)(x14)=200\dfrac{6\times 5\times 4}{3\times 2\times 1}{{\left[ \sqrt{{{x}^{\dfrac{1}{\log x+1}}}} \right]}^{(3)}}({{x}^{\dfrac{1}{4}}})=200
(5×4)[x1logx+1](3)(x14)=200(5\times 4){{\left[ \sqrt{{{x}^{\dfrac{1}{\log x+1}}}} \right]}^{(3)}}({{x}^{\dfrac{1}{4}}})=200
So simplifying we get,
(20)(x1logx+1)(32)(x14)=200(20){{\left( {{x}^{\dfrac{1}{\log x+1}}} \right)}^{\left( \dfrac{3}{2} \right)}}({{x}^{\dfrac{1}{4}}})=200
Dividing above Whole equation by 2020 , We get,
(x1logx+1)(32)(x14)=20020{{\left( {{x}^{\dfrac{1}{\log x+1}}} \right)}^{\left( \dfrac{3}{2} \right)}}({{x}^{\dfrac{1}{4}}})=\dfrac{200}{20}
(x1logx+1)(32)(x14)=10{{\left( {{x}^{\dfrac{1}{\log x+1}}} \right)}^{\left( \dfrac{3}{2} \right)}}({{x}^{\dfrac{1}{4}}})=10
So simplifying in simple manner we get,
(x32(logx+1))(x14)=10\left( {{x}^{\dfrac{3}{2(\log x+1)}}} \right)({{x}^{\dfrac{1}{4}}})=10………. (5)
We know the property,
aman=am+n{{a}^{m}}{{a}^{n}}={{a}^{m+n}}
So we have to apply the above property,
So applying the property we get,
So using the above property in (5), We get,
(x32(logx+1)+14)=10\left( {{x}^{\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}}} \right)=10
Also we know the property aloga6=6{{a}^{{{\log }_{a}}6}}=6 So applying same property we get,
(x32(logx+1)+14)=xlogx10=10\left( {{x}^{\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}}} \right)={{x}^{{{\log }_{x}}10}}=10
So equating we get,
32(logx+1)+14=logx10\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}={{\log }_{x}}10
So writing logx10=1log10x{{\log }_{x}}10=\dfrac{1}{{{\log }_{10}}x} .
Now let us substitute log10x=y{{\log }_{10}}x=y,
So Substituting above we get,
32(y+1)+14=1y\dfrac{3}{2(y+1)}+\dfrac{1}{4}=\dfrac{1}{y}
So simplifying it we get, i.e. taking LCM,
We get it as,
3×22×2(y+1)+(y+1)4×(y+1)=1y\dfrac{3\times 2}{2\times 2(y+1)}+\dfrac{(y+1)}{4\times (y+1)}=\dfrac{1}{y}
6+y+14(y+1)=1y\dfrac{6+y+1}{4(y+1)}=\dfrac{1}{y}
So now cross multiplying,
we get it as follows,
(6+y+1)×y=4(y+1)(6+y+1)\times y=4(y+1)
6y+y2+y=4y+4 y2+7y4y4=0 y2+3y4=0 y2+4yy4=0 y(y+4)(y+4)=0 (y+4)(y1)=0 \begin{aligned} & 6y+{{y}^{2}}+y=4y+4 \\\ & {{y}^{2}}+7y-4y-4=0 \\\ & {{y}^{2}}+3y-4=0 \\\ & {{y}^{2}}+4y-y-4=0 \\\ & y(y+4)-(y+4)=0 \\\ & (y+4)(y-1)=0 \\\ \end{aligned}
So we get from above the value of yy ,
y=4y=-4 and y=1y=1
We know that log10x=y{{\log }_{10}}x=y,
So We also get y=4y=-4,
log10x=4 x=104 \begin{aligned} & {{\log }_{10}}x=-4 \\\ & x={{10}^{-4}} \\\ \end{aligned}
For y=1y=1
log10x=1 x=10 \begin{aligned} & {{\log }_{10}}x=1 \\\ & x=10 \\\ \end{aligned}
Since, x>1x>1 , so the value of x=10x=10 .

Option (A) is correct.

Note: Be familiar with the expansion and Tr+1=ncranrbr{{T}_{r+1}}{{=}^{n}}{{c}_{r}}{{a}^{n-r}}{{b}^{r}} remember this (r+1)th{{(r+1)}^{th}} term.
You should know the properties of log so you can solve the sum. The properties such as logx10=1log10x{{\log }_{x}}10=\dfrac{1}{{{\log }_{10}}x} etc. Also be familiar with aman=am+n{{a}^{m}}{{a}^{n}}={{a}^{m+n}} this property. While solving, take care of conversions.