Solveeit Logo

Question

Question: If the fourth term in binomial expansion of \[{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{...

If the fourth term in binomial expansion of (x11+log10x+x112)6{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}} is equals to 200, and x > 1, then the value of x is:
(a)103{{10}^{3}}
(b) 100100
(c) 104{{10}^{4}}
(d) 10

Explanation

Solution

To solve this question, first we will expand the given expression by using binomial expansion, then, we will find the fourth term of expansion by using the nth{{n}^{th}} term formula. After that, we will put that term equal to 200. And then using properties of the logarithmic and exponential function, we will solve for the value of x such that x > 1.

Complete step-by-step solution
Now, in question it is given that fourth term in binomial expansion of (x11+log10x+x112)6{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}} is equals to 200.
Let, the fourth term of binomial expansion be denoted by T4{{T}_{4}}.
Using concept of binomial expansion of (a+b)n=nC0anb0+nC1an1b1+nC2an2b2+......+nCna0bn{{(a+b)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}} , we get
Now, (x11+log10x+x112)6=6C0(x11+log10x)6(x112)0+6C1(x11+log10x)5(x112)1+......+6C6(x11+log10x)0(x112)6{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}{{=}^{6}}{{C}_{0}}{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{6}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{0}}{{+}^{6}}{{C}_{1}}{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{5}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{1}}+......+{{\,}^{6}}{{C}_{6}}{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{0}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{6}}
On simplifying, we get
(x11+log10x+x112)6=(x11+log10x)6+6(x11+log10x)5(x112)+......+(x112)6{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}}={{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{6}}+6{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}} \right)}^{5}}\left( {{x}^{\dfrac{1}{12}}} \right)+......+\,{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{6}}, as nC0=1^{n}{{C}_{0}}=1, nC1=n^{n}{{C}_{1}}=n and nCn=1^{n}{{C}_{n}}=1 where nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}, and n!=n(n1)(n2).......3.2.1n!=n(n-1)(n-2).......3.2.1 .
Also, we know that nth{{n}^{th}} term of expansion (a+b)n{{(a+b)}^{n}}, is given as Tn=nCranrbr{{T}_{n}}{{=}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}, where r + 1 = n.
So, we can say that fourth term on expansion of (x11+log10x+x112)6{{\left( \sqrt{{{x}^{\dfrac{1}{1+{{\log }_{10}}x}}}}+{{x}^{\dfrac{1}{12}}} \right)}^{6}} will be,T4=6C3(x11+log10x)32(x112)3{{T}_{4}}{{=}^{6}}{{C}_{3}}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{3}}
As given that, T4=200{{T}_{4}}=200
So, we can say that
6C3(x11+log10x)32(x112)3=200^{6}{{C}_{3}}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}{{\left( {{x}^{\dfrac{1}{12}}} \right)}^{3}}=200
Now, on simplifying the terms, we get
6!3!(63)!(x11+log10x)32(x14)=200\dfrac{6!}{3!\left( 6-3 \right)!}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=200, as (xa)b=xab{{({{x}^{a}})}^{b}}={{x}^{a}}^{b}
On simplifying, factorials, we get
6.5.4.3!3.2(3)!(x11+log10x)32(x14)=200\dfrac{6.5.4.3!}{3.2\left( 3 \right)!}{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=200
20(x11+log10x)32(x14)=200\Rightarrow 20{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=200
On solving, we get
(x11+log10x)32(x14)=10{{\left( {{x}^{\dfrac{1}{1+{{\log }_{10}}x}}} \right)}^{\dfrac{3}{2}}}\left( {{x}^{\dfrac{1}{4}}} \right)=10
Also, we know that xaxb=xa+b{{x}^{a}}{{x}^{b}}={{x}^{a}}^{+b}
So, we have
(x32(1(1+log10x)))(x14)=10\left( {{x}^{\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}} \right)\left( {{x}^{\dfrac{1}{4}}} \right)=10
x14+32(1(1+log10x))=10\Rightarrow {{x}^{\dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}}=10
Now, taking log base 10 on both side, that is log10{{\log }_{10}} on both side, we get
log10(x14+32(1(1+log10x)))=log10(10){{\log }_{10}}\left( {{x}^{\dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}} \right)={{\log }_{10}}(10)
We know that, logb(b)=1{{\log }_{b}}(b)=1,
So, we get
log10(x14+32(1(1+log10x)))=1{{\log }_{10}}\left( {{x}^{\dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right)}} \right)=1
Also, we know that, logabc=clogab{{\log }_{a}}{{b}^{c}}=c{{\log }_{a}}b
So, we get
(14+32(1(1+log10x)))log10(x)=1\left( \dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+{{\log }_{10}}x)} \right) \right){{\log }_{10}}\left( x \right)=1
Let, log10(x)=t{{\log }_{10}}\left( x \right)=t, we get
(14+32(1(1+t)))t=1\left( \dfrac{1}{4}+\dfrac{3}{2}\left( \dfrac{1}{(1+t)} \right) \right)t=1
On simplifying, we get
t4+32(t(1+t))=1\dfrac{t}{4}+\dfrac{3}{2}\left( \dfrac{t}{(1+t)} \right)=1
t2+7t=4+4t\Rightarrow {{t}^{2}}+7t=4+4t
Or, t2+3t4=0{{t}^{2}}+3t-4=0
Now, for quadratic equation, ax2+bx+c=0a{{x}^{2}}+bx+c=0 value of x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} .
So, for t2+3t4=0{{t}^{2}}+3t-4=0
t=(3)±(3)24(1)(4)2(1)t=\dfrac{-(3)\pm \sqrt{{{(3)}^{2}}-4(1)(-4)}}{2(1)}
t=1,4t=1,-4
As, log10(x)=t{{\log }_{10}}\left( x \right)=t
So, log10(x)=1,4{{\log }_{10}}\left( x \right)=1,-4
As, we know that, loga(b)=c{{\log }_{a}}\left( b \right)=c then, b=acb={{a}^{c}}
So, x=10,104x=10,{{10}^{-4}}
As I question it is given that x > 1
So, x = 10
Hence, option ( d ) is correct.

Note: To solve such question, one must know basic properties of logarithmic and exponential functions such as logb(b)=1{{\log }_{b}}(b)=1, loga(b)=c{{\log }_{a}}\left( b \right)=c then, b=acb={{a}^{c}}, logabc=clogab{{\log }_{a}}{{b}^{c}}=c{{\log }_{a}}b and (xa)b=xab{{({{x}^{a}})}^{b}}={{x}^{a}}^{b}, xaxb=xa+b{{x}^{a}}{{x}^{b}}={{x}^{a}}^{+b}. Always remember that (a+b)n=nC0anb0+nC1an1b1+nC2an2b2+......+nCna0bn{{(a+b)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......{{+}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}} whose nth{{n}^{th}} term of expansion (a+b)n{{(a+b)}^{n}}, is given as Tn=nCranrbr{{T}_{n}}{{=}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}, where r + 1 = n. Try to solve these questions without any calculation error, else the answer obtained will be wrong or the solution gets more complex.