Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the four points, whose position vectors are 3i^4j+2k^,l+2jk^42k^j+3k^3 \hat{i}-4 j+2 \hat{k}, l+2 j-\hat{k}_4-2 \hat{k}-j+3 \hat{k} and 5i^2αj^+4k^5 \hat{i}-2 \alpha \hat{j}+4 \hat{k} are coplanar, then a is equal to

A

10717\frac{107}{17}

B

7317\frac{73}{17}

C

7317-\frac{73}{17}

D

10717-\frac{107}{17}

Answer

7317\frac{73}{17}

Explanation

Solution

The correct answer is (B) : 7317\frac{73}{17}
Let A:(3,−4,2)C:(−2,−1,3)
B : (1,2,−1) D : (5,−2α,4)
A,B,C,D are coplanar points, then
⇒∣∣​1−3−2−35−3​2+4−1+4−2α+4​−1−23−24−2​∣∣​=0
⇒α=1773​