Solveeit Logo

Question

Question: If the four plane faces of a tetrahedron are represented by the equation $\overrightarrow{r} \cdot (...

If the four plane faces of a tetrahedron are represented by the equation r(li^+mj^)=0\overrightarrow{r} \cdot (l\hat{i}+m\hat{j}) = 0, r(mj^+nk^)=0\overrightarrow{r} \cdot (m\hat{j}+n\hat{k}) = 0, r(nk^+li^)=0\overrightarrow{r} \cdot (n\hat{k}+l\hat{i}) = 0, r(li^+mj^+nk^)=p\overrightarrow{r} \cdot (l\hat{i}+m\hat{j}+n\hat{k}) = p, then the volume of the tetrahedron, is :

A

p36lmn\frac{p^3}{6lmn}

B

2p33lmn\frac{2p^3}{3lmn}

C

3p3lmn\frac{3p^3}{lmn}

D

6p3lmn\frac{6p^3}{lmn}

Answer

2p33lmn\frac{2p^3}{3lmn}

Explanation

Solution

The four given planes are:

Plane 1: lx+my=0lx + my = 0
Plane 2: my+nz=0my + nz = 0
Plane 3: lx+nz=0lx + nz = 0
Plane 4: lx+my+nz=plx + my + nz = p

Step 1: Find the Vertices

  • Vertex A: Intersection of planes 1, 2, and 3. Solving the system of equations lx+my=0lx + my = 0, my+nz=0my + nz = 0, and lx+nz=0lx + nz = 0 yields x=y=z=0x = y = z = 0. Thus, A=(0,0,0)A = (0, 0, 0).

  • Vertex B: Intersection of planes 1, 2, and 4. Solving the system lx+my=0lx + my = 0, my+nz=0my + nz = 0, and lx+my+nz=plx + my + nz = p gives B=(pl,pm,pn)B = (\frac{p}{l}, -\frac{p}{m}, \frac{p}{n}).

  • Vertex C: Intersection of planes 1, 3, and 4. Solving the system lx+my=0lx + my = 0, lx+nz=0lx + nz = 0, and lx+my+nz=plx + my + nz = p gives C=(pl,pm,pn)C = (-\frac{p}{l}, \frac{p}{m}, \frac{p}{n}).

  • Vertex D: Intersection of planes 2, 3, and 4. Solving the system my+nz=0my + nz = 0, lx+nz=0lx + nz = 0, and lx+my+nz=plx + my + nz = p gives D=(pl,pm,pn)D = (\frac{p}{l}, \frac{p}{m}, -\frac{p}{n}).

Step 2: Compute the Volume

The volume VV of a tetrahedron with vertices AA, BB, CC, and DD (with AA at the origin) is:

V=16det(B,C,D)V = \frac{1}{6} \left| \det(\vec{B},\vec{C},\vec{D}) \right|

Where:

B=(pl,pm,pn)\vec{B} = \left(\frac{p}{l}, -\frac{p}{m}, \frac{p}{n}\right)
C=(pl,pm,pn)\vec{C} = \left(-\frac{p}{l}, \frac{p}{m}, \frac{p}{n}\right)
D=(pl,pm,pn)\vec{D} = \left(\frac{p}{l}, \frac{p}{m}, -\frac{p}{n}\right)

Factoring out pp from each vector:

det(B,C,D)=p3det(1l1m1n1l1m1n1l1m1n)\det(\vec{B},\vec{C},\vec{D}) = p^3 \det \begin{pmatrix} \frac{1}{l} & -\frac{1}{m} & \frac{1}{n} \\ -\frac{1}{l} & \frac{1}{m} & \frac{1}{n} \\ \frac{1}{l} & \frac{1}{m} & -\frac{1}{n} \end{pmatrix}

Let MM denote the matrix:

M=(1l1m1n1l1m1n1l1m1n)M = \begin{pmatrix} \frac{1}{l} & -\frac{1}{m} & \frac{1}{n} \\ -\frac{1}{l} & \frac{1}{m} & \frac{1}{n} \\ \frac{1}{l} & \frac{1}{m} & -\frac{1}{n} \end{pmatrix}

Calculate det(M)\det(M) by expansion:

det(M)=1ldet(1m1n1m1n)(1m)det(1l1n1l1n)+1ndet(1l1m1l1m)\det(M) = \frac{1}{l}\,\det\begin{pmatrix}\frac{1}{m} & \frac{1}{n} \\ \frac{1}{m} & -\frac{1}{n}\end{pmatrix} - \left(-\frac{1}{m}\right)\,\det\begin{pmatrix} -\frac{1}{l} & \frac{1}{n} \\ \frac{1}{l} & -\frac{1}{n}\end{pmatrix} + \frac{1}{n}\,\det\begin{pmatrix} -\frac{1}{l} & \frac{1}{m} \\ \frac{1}{l} & \frac{1}{m}\end{pmatrix}

Evaluate the 2x2 determinants:

  1. det(1m1n1m1n)=1m(1n)1n(1m)=2mn.\det\begin{pmatrix}\frac{1}{m} & \frac{1}{n} \\ \frac{1}{m} & -\frac{1}{n}\end{pmatrix} = \frac{1}{m}\left(-\frac{1}{n}\right) - \frac{1}{n}\left(\frac{1}{m}\right) = -\frac{2}{m n}.

  2. det(1l1n1l1n)=(1l)(1n)(1n)(1l)=1ln1ln=0.\det\begin{pmatrix}-\frac{1}{l} & \frac{1}{n} \\ \frac{1}{l} & -\frac{1}{n}\end{pmatrix} = \left(-\frac{1}{l}\right)\left(-\frac{1}{n}\right) - \left(\frac{1}{n}\right)\left(\frac{1}{l}\right) = \frac{1}{l n} - \frac{1}{l n} = 0.

  3. det(1l1m1l1m)=(1l)(1m)(1l)(1m)=2lm.\det\begin{pmatrix}-\frac{1}{l} & \frac{1}{m} \\ \frac{1}{l} & \frac{1}{m}\end{pmatrix} = \left(-\frac{1}{l}\right)\left(\frac{1}{m}\right) - \left(\frac{1}{l}\right)\left(\frac{1}{m}\right) = -\frac{2}{l m}.

Substitute back:

det(M)=1l(2mn)+1m0+1n(2lm)=2lmn2lmn=4lmn.\det(M) = \frac{1}{l}\left(-\frac{2}{m n}\right) + \frac{1}{m}\cdot 0 + \frac{1}{n}\left(-\frac{2}{l m}\right) = -\frac{2}{l m n} - \frac{2}{l m n} = -\frac{4}{l m n}.

Taking the absolute value gives:

det(M)=4lmn.\left|\det(M)\right| = \frac{4}{l m n}.

Thus, the volume is:

V=16p34lmn=4p36lmn=2p33lmn.V = \frac{1}{6} \, p^3 \cdot \frac{4}{l m n} = \frac{4p^3}{6l m n} = \frac{2p^3}{3l m n}.