Question
Question: If the foci of the ellipse \(\frac{x^{2}}{25} + \frac{y^{2}}{b^{2}} = 1\)and the hyperbola \(\frac{x...
If the foci of the ellipse 25x2+b2y2=1and the hyperbola 144x2−81y2=251coincide, then the value of b2is
A
3
B
16
C
9
D
12
Answer
16
Explanation
Solution
If eccentricities of ellipse and hyperbola are e & e1∴foci (±ae,0) & (±a1e1,0)
Here ae=a1e1
a2e2=a12e12
a2(1−a2b2)=a12(1−a12b12)
⇒ a2−b2=a12+b12
⇒ 25−b2=25144+2581= 9
∴ b2=16