Solveeit Logo

Question

Question: If the foci of the ellipse \(\frac{x^{2}}{25} + \frac{y^{2}}{b^{2}} = 1\)and the hyperbola \(\frac{x...

If the foci of the ellipse x225+y2b2=1\frac{x^{2}}{25} + \frac{y^{2}}{b^{2}} = 1and the hyperbola x2144y281=125\frac{x^{2}}{144} - \frac{y^{2}}{81} = \frac{1}{25}coincide, then the value of b2b^{2}is

A

3

B

16

C

9

D

12

Answer

16

Explanation

Solution

If eccentricities of ellipse and hyperbola are e & e1e_{1}\thereforefoci (±ae,0)( \pm ae,0) & (±a1e1,0)\left( \pm a_{1}e_{1},0 \right)

Here ae=a1e1ae = a_{1}e_{1}

a2e2=a12e12a^{2}e^{2} = a_{1}^{2}e_{1}^{2}

a2(1b2a2)=a12(1b12a12)a^{2}\left( 1 - \frac{b^{2}}{a^{2}} \right) = a_{1}^{2}\left( 1 - \frac{b_{1}^{2}}{a_{1}^{2}} \right)

a2b2=a12+b12a^{2} - b^{2} = a_{1}^{2} + b_{1}^{2}

25b2=14425+812525 - b^{2} = \frac{144}{25} + \frac{81}{25}= 9

\therefore b2=16b^{2} = 16