Solveeit Logo

Question

Question: If the foci of the ellipse \(\frac{x^{2}}{16} + \frac{y^{2}}{b^{2}}\) = 1 and the hyperbola \(\frac{...

If the foci of the ellipse x216+y2b2\frac{x^{2}}{16} + \frac{y^{2}}{b^{2}} = 1 and the hyperbola x2144y281=125\frac{x^{2}}{144} - \frac{y^{2}}{81} = \frac{1}{25} coincide, then the value of b2b^{2} is

A

1

B

5

C

7

D

9

Answer

7

Explanation

Solution

For hyperbola, x2144y281=125\frac{x^{2}}{144} - \frac{y^{2}}{81} = \frac{1}{25}

A=14425,B=8125,e1=1+B2A2=1+81144=225144=54A = \sqrt{\frac{144}{25}},B = \sqrt{\frac{81}{25}},e_{1} = \sqrt{1 + \frac{B^{2}}{A^{2}}} = \sqrt{1 + \frac{81}{144}} = \sqrt{\frac{225}{144}} = \frac{5}{4}Therefore foci = (±ae1,0)=(±125.54,0)=(±3,0)( \pm ae_{1},0) = \left( \pm \frac{12}{5}.\frac{5}{4},0 \right) = ( \pm 3,0). Therefore foci of ellipse i.e., (±4e,0)=(±3,0)( \pm 4e,0) = ( \pm 3,0) (For ellipse a=4a = 4)

e=34,e = \frac{3}{4}, Hence P(x1,y1)P(x_{1},y_{1})