Solveeit Logo

Question

Question: If the foci of the ellipse \(\frac{x^{2}}{16} + \frac{y^{2}}{b^{2}} = 1\) and the hyperbola \(\frac{...

If the foci of the ellipse x216+y2b2=1\frac{x^{2}}{16} + \frac{y^{2}}{b^{2}} = 1 and the hyperbola x2144y281=125\frac{x^{2}}{144} - \frac{y^{2}}{81} = \frac{1}{25} coincide, then the value of b2 is

A

1

B

5

C

7

D

9

Answer

7

Explanation

Solution

Given equation of ellipse is x216+y2b2=1\frac{x^{2}}{16} + \frac{y^{2}}{b^{2}} = 1.

Here a2 = 16 ⇒ a = 4.

Foci of the ellipse are (± ae, 0) i.e., (± 4e, 0).

Given equation of hyperbola is

x2144y281=125orx2144y281=1\frac{x^{2}}{144} - \frac{y^{2}}{81} = \frac{1}{25}or\frac{x^{2}}{144} - \frac{y^{2}}{81} = 1.

Here a2 = 14425a=125andb2=8125b95\frac{144}{25} \Rightarrow a = \frac{12}{5}andb^{2} = \frac{81}{25} \Rightarrow b \Rightarrow \frac{9}{5}.

Also b2 = a2 (e121)8125=14425(e121)(e_{1}^{2} - 1) \Rightarrow \frac{81}{25} = \frac{144}{25}(e_{1}^{2} - 1)

e121=81x2525x144=916\Rightarrow e_{1}^{2} - 1 = \frac{81x25}{25x144} = \frac{9}{16}.

e12=2516i.e.e1=54e_{1}^{2} = \frac{25}{16}i.e.e_{1} = \frac{5}{4}.

Foci of hyperbola = (±125x54,0)=(±3,0)\left( \pm \frac{12}{5}x\frac{5}{4},0 \right) = ( \pm 3,0)

According to the question, we have

4e = 3 ⇒ e = ¾.

For ellipse, b2 = a+2 (1 - e2).

⇒ b2 = 16 (1916)\left( 1 - \frac{9}{16} \right) = 16 x 716\frac{7}{16}= 7.