Solveeit Logo

Question

Mathematics Question on sections of a cone

If the foci of the ellipse x216 \frac {x^{2}} {{16}}+y2b2\frac {y^{2} }{{b}^2}=1 and hyperbola x2144y281=125\frac {x^{2}} {144} - \frac {y^{2}}{81}=\frac {1}{25} coincide then the value of b2b^2 is

A

1

B

7

C

5

D

9

Answer

7

Explanation

Solution

The correct answer is B:7
Given that:
Equation of hyperbola is;
x2144y281=125\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}
x214425y28125=1\frac{x^2}{\frac{144}{25}}-\frac{y^2}{\frac{81}{25}}=1
a2=14425,b2=8125e=1+b2a2\therefore a^2=\frac{144}{25} , b^2=\frac{81}{25} \therefore e=\sqrt{1+\frac{b^2}{a^2}}
\therefore Focii is (±ae,0) or (±3,0) =1+81144=1512=\sqrt{1+\frac{81}{144}}=\frac{15}{12}
Now for ellipse,
i.e, x216+y2b2=1\frac{x^2}{16}+\frac{y^2}{b^2}=1
a2=16a^2=16 ,then by considering eccentricity ‘e’,focii is (±4e,0)
as focii ellipse and hyperbola coincides each with other
then; 4e=3
e=34e=\frac{3}{4}
\therefore for ellipse e2=1b2a2e^2=1-\frac{b^2}{a^2}
916=1b216\frac{9}{16}=1-\frac{b^2}{16}
b2=7b^2=7