Solveeit Logo

Question

Question: If the foci of the ellipse 16x2 + 7y2 = 112 and of the hyperbola \(\frac{y^{2}}{144}–\frac{x^{2}}{a^...

If the foci of the ellipse 16x2 + 7y2 = 112 and of the hyperbola y2144x2a2=125\frac{y^{2}}{144}–\frac{x^{2}}{a^{2}} = \frac{1}{25}coincide, then a =

A

3

B

9

C

81

D

8

Answer

9

Explanation

Solution

For the ellipsex27+y216=1\frac{x^{2}}{7} + \frac{y^{2}}{16} = 1 , e2 = a2b2a2\frac{a^{2}–b^{2}}{a^{2}} = 916\frac{9}{16}

\ e =34\frac{3}{4}

CS = ae 34\frac{3}{4}= 4 ×34\frac{3}{4}= 3

For the hyperbola y214425x2a225\frac{y^{2}}{\frac{144}{25}}–\frac{x^{2}}{\frac{a^{2}}{25}}= 1,

e¢2 = a2+b2a2=14425+a22514425\frac{a^{2} + b^{2}}{a^{2}} = \frac{\frac{144}{25} + \frac{a^{2}}{25}}{\frac{144}{25}}

\ e¢ = 144+a212\frac{\sqrt{144 + a^{2}}}{12} and CS = ae¢

= 125\frac{12}{5}×144+a212\frac{\sqrt{144 + a^{2}}}{12}

CS being the same in both the cases144+a25\frac{\sqrt{144 + a^{2}}}{5}= 3

\ a2 = 81, a = 9