Question
Question: If the foci of the ellipse 16x2 + 7y2 = 112 and of the hyperbola \(\frac{y^{2}}{144}–\frac{x^{2}}{a^...
If the foci of the ellipse 16x2 + 7y2 = 112 and of the hyperbola 144y2–a2x2=251coincide, then a =
A
3
B
9
C
81
D
8
Answer
9
Explanation
Solution
For the ellipse7x2+16y2=1 , e2 = a2a2–b2 = 169
\ e =43
CS = ae 43= 4 ×43= 3
For the hyperbola 25144y2–25a2x2= 1,
e¢2 = a2a2+b2=2514425144+25a2
\ e¢ = 12144+a2 and CS = ae¢
= 512×12144+a2
CS being the same in both the cases5144+a2= 3
\ a2 = 81, a = 9