Solveeit Logo

Question

Mathematics Question on Straight lines

If the extremities of the base of an isosceles triangle are the points (2a,0)(2a, 0) and (0,a)(0, a) and the equation of one of the sides is x=2ax = 2a, then the area of the triangle, in square units, is :

A

54a2\frac{5}{4}a^{2}

B

52a2\frac{5}{2}a^{2}

C

25a24\frac{25a^2}{4}

D

5a25a^2

Answer

52a2\frac{5}{2}a^{2}

Explanation

Solution

Let yy-coordinate of C=bC =b
AB=4a2+a2=5aAB=\sqrt{4a^{2}+a^{2}}=\sqrt{5}a
Now, AC=BCb=a24a2+(ba)2AC=BC \Rightarrow b=a^{2}\sqrt{4a^{2}+\left(b-a\right)^{2}}
b2=4a2+b2+a22abb^{2}=4a^{2}+b^{2}+a^{2}-2ab
2ab=5a2b=5a2\Rightarrow 2ab=5a^{2} \Rightarrow b=\frac{5a}{2}
C=(2a,5a2)\therefore C=\left(2a, \frac{5a}{2}\right)
Hence area of the triangle
=122a01 0a1 2a5a21=122a01 0a1 05a20=\frac{1}{2}\begin{vmatrix}2a&0&1\\\ 0&a&1\\\ 2a&\frac{5a}{2}&1\end{vmatrix}=\frac{1}{2}\begin{vmatrix}2a&0&1\\\ 0&a&1\\\ 0&\frac{5a}{2}&0\end{vmatrix}
=12×2a(5a2)=5a22=\frac{1}{2}\times2a\left(-\frac{5a}{2}\right)=-\frac{5a^{2}}{2}
Since area is always +ve, hence area
=5a22=\frac{5a^{2}}{2} sunit