Solveeit Logo

Question

Question: If the expression $x(e^x-1)(x-1)(x-2)^3(x-3)^5 \ge 0$ then the true solution set is...

If the expression x(ex1)(x1)(x2)3(x3)50x(e^x-1)(x-1)(x-2)^3(x-3)^5 \ge 0 then the true solution set is

A

[0,1][2,3]

B

(-∞,0][1,2][3,∞]

C

[1,2][3,∞)∪{0}

D

(-∞,0][2,∞)

Answer

[1,2][3,∞)∪{0}

Explanation

Solution

The inequality to solve is x(ex1)(x1)(x2)3(x3)50x(e^x-1)(x-1)(x-2)^3(x-3)^5 \ge 0.

1. Identify Critical Points: The critical points are the values of xx where any of the factors become zero.

  • x=0x = 0
  • ex1=0    ex=1    x=0e^x - 1 = 0 \implies e^x = 1 \implies x = 0
  • x1=0    x=1x - 1 = 0 \implies x = 1
  • x2=0    x=2x - 2 = 0 \implies x = 2
  • x3=0    x=3x - 3 = 0 \implies x = 3

The distinct critical points are 0,1,2,30, 1, 2, 3. These points divide the number line into intervals: (,0)(-\infty, 0), (0,1)(0, 1), (1,2)(1, 2), (2,3)(2, 3), (3,)(3, \infty).

2. Analyze the Sign of Each Factor: Let f(x)=x(ex1)(x1)(x2)3(x3)5f(x) = x(e^x-1)(x-1)(x-2)^3(x-3)^5. We need to determine the sign of f(x)f(x) in each interval.

  • Factor xx: Positive for x>0x>0, negative for x<0x<0.
  • Factor ex1e^x-1: Positive for x>0x>0, negative for x<0x<0. At x=0x=0, ex1=0e^x-1=0.
  • Factor x1x-1: Positive for x>1x>1, negative for x<1x<1.
  • Factor (x2)3(x-2)^3: The sign is determined by (x2)(x-2). Positive for x>2x>2, negative for x<2x<2.
  • Factor (x3)5(x-3)^5: The sign is determined by (x3)(x-3). Positive for x>3x>3, negative for x<3x<3.

3. Sign Analysis in Intervals:

  • Interval (,0)(-\infty, 0):

    • xx: -
    • ex1e^x-1: - (since x<0    ex<1x<0 \implies e^x < 1)
    • x1x-1: -
    • (x2)3(x-2)^3: -
    • (x3)5(x-3)^5: -
    • f(x)=()×()×()×()×()=()f(x) = (-) \times (-) \times (-) \times (-) \times (-) = (-). So f(x)<0f(x) < 0.
  • Interval (0,1)(0, 1):

    • xx: +
    • ex1e^x-1: + (since x>0    ex>1x>0 \implies e^x > 1)
    • x1x-1: -
    • (x2)3(x-2)^3: -
    • (x3)5(x-3)^5: -
    • f(x)=(+)×(+)×()×()×()=()f(x) = (+) \times (+) \times (-) \times (-) \times (-) = (-). So f(x)<0f(x) < 0.
  • Interval (1,2)(1, 2):

    • xx: +
    • ex1e^x-1: +
    • x1x-1: +
    • (x2)3(x-2)^3: -
    • (x3)5(x-3)^5: -
    • f(x)=(+)×(+)×(+)×()×()=(+)f(x) = (+) \times (+) \times (+) \times (-) \times (-) = (+). So f(x)>0f(x) > 0.
  • Interval (2,3)(2, 3):

    • xx: +
    • ex1e^x-1: +
    • x1x-1: +
    • (x2)3(x-2)^3: + (since x>2x>2)
    • (x3)5(x-3)^5: -
    • f(x)=(+)×(+)×(+)×(+)×()=()f(x) = (+) \times (+) \times (+) \times (+) \times (-) = (-). So f(x)<0f(x) < 0.
  • Interval (3,)(3, \infty):

    • xx: +
    • ex1e^x-1: +
    • x1x-1: +
    • (x2)3(x-2)^3: +
    • (x3)5(x-3)^5: + (since x>3x>3)
    • f(x)=(+)×(+)×(+)×(+)×(+)=(+)f(x) = (+) \times (+) \times (+) \times (+) \times (+) = (+). So f(x)>0f(x) > 0.

4. Include Critical Points: The inequality is f(x)0f(x) \ge 0. This means we include the intervals where f(x)>0f(x) > 0 and the points where f(x)=0f(x) = 0. The points where f(x)=0f(x) = 0 are 0,1,2,30, 1, 2, 3.

5. Combine Results: From the sign analysis, f(x)>0f(x) > 0 for x(1,2)x \in (1, 2) and x(3,)x \in (3, \infty). Including the roots where f(x)=0f(x)=0: The solution set is {0}[1,2][3,)\{0\} \cup [1, 2] \cup [3, \infty).

6. Match with Options: The solution set {0}[1,2][3,)\{0\} \cup [1, 2] \cup [3, \infty) matches option (C).