Solveeit Logo

Question

Question: If the expression \(\left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \ri...

If the expression (1+tanx+tan2x)(1cotx+cot2x)\left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) has a value 3 \geqslant 3. Then x should belong to-
(a) 0xπ20 \leqslant x \leqslant \dfrac{\pi }{2}
(b) 0xπ0 \leqslant x \leqslant \pi \,
(c) xR,xx \in \mathbb{R},\forall x
(d) xRx \in \mathbb{R} excepting x=nπ2,nZx = \dfrac{{n\pi }}{2},n \in \mathbb{Z}

Explanation

Solution

In this question we will firstly try to reduce the given expression in simpler form then we will check the points where the reduced function can become not defined. Then finally we do not include those points in values of xx.

Complete step-by-step answer:
The given expression is (1+tanx+tan2x)(1cotx+cot2x)3\left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \geqslant 3 -(1)
Let f(x)=(1+tanx+tan2x)(1cotx+cot2x)f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right)
So now solving the above expression,
f(x)=(1+tanx+tan2x)(1cotx+cot2x)  = 1 - cotx+cot2x+tanx1+cotx+tan2xtanx+1  = tan2x+cot2x+1  f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \\\ {\text{ = 1 - }}\cot x + {\cot ^2}x + \tan x - 1 + \cot x + {\tan ^2}x - \tan x + 1 \\\ {\text{ = }}{\tan ^2}x + {\cot ^2}x + 1 \\\ -(2)
Now using (1) and (2) we can write,
f(x)=tan2x+cot2x+13 tan2x+cot2x2    f\left( x \right) = {\tan ^2}x + {\cot ^2}x + 1 \geqslant 3 \\\ \Rightarrow {\tan ^2}x + {\cot ^2}x \geqslant 2 \\\ {\text{ }} \\\ -(3)
So, here in (3) equation xRx \in \mathbb{R} satisfy the equation except the points where tanx\tan x and cotx\cot x are not defined. And we know that,
tanx\tan x is not defined when xπ2+nπx \in \dfrac{\pi }{2} + n\pi , nZn \in \mathbb{Z}
cotx\cot x is not defined when xnπx \in n\pi , nZn \in \mathbb{Z}
So, (3) is not defined when,
x \in \dfrac{\pi }{2} + n\pi \cup n\pi \\\ x \in \left\\{ {\dfrac{\pi }{2},\dfrac{{3\pi }}{2},\dfrac{{5\pi }}{2},\dfrac{{7\pi }}{2}, - - - - } \right\\} \cup \left\\{ {0,\pi ,2\pi ,3\pi , - - - - } \right\\} \\\ x \in n\pi \\\ ,nZn \in \mathbb{Z}
Therefore, (1) satisfies when xRx \in \mathbb{R} excepting xnπ,nZx \in n\pi ,n \in \mathbb{Z}
Hence, option (d) is the correct answer.

Note: In the above question when we got (3) equation we can further simplify it into sinx\sin x and cosx\cos x. And then we can find the values of x for which equation is not defined. This would be another method to solve this question.