Question
Question: If the expansions in power of x of the function \(\dfrac1{\left(1-\mathrm{ax}\right)\left(1-\mathrm{...
If the expansions in power of x of the function (1−ax)(1−bx)1(a=b) is a0 + a1x + a2x2 + ... then an is-
A.b−abn−anB.b−aan−bnC.b−aan+1−bn+1D.b−abn+1−an+1
Solution
Hint: The expression for binomial expansion will be used in this question. The formula used is-
(1−x)−1=1+x+x2+..inifiniteterms
Complete step-by-step answer:
In the question, we have to find and predict the nth term which is the coefficient of xn
\dfrac1{\left(1-\mathrm{ax}\right)\left(1-\mathrm{bx}\right)}=\left(1-\mathrm{ax}\right)^{-1}\left(1-\mathrm{bx}\right)^{-1}\\\=\left(1+\mathrm{ax}+\mathrm a^2\mathrm x^2+...+\mathrm a^{\mathrm n}\mathrm x^{\mathrm n}+...\right)\left(1+\mathrm{bx}+\mathrm b^2\mathrm x^2...+\mathrm b^{\mathrm n}\mathrm x^{\mathrm n}+...\right)\\\\\mathrm{We}\;\mathrm{have}\;\mathrm{to}\;\mathrm{find}\;\mathrm{the}\;\mathrm{coefficient}\;\mathrm{of}\;\mathrm x^{\mathrm n}\\\=\mathrm b^{\mathrm n}+\mathrm b^{\mathrm n-1}\mathrm a+....+\mathrm{ba}^{\mathrm n-1}+\mathrm a^{\mathrm n}\\\\\\\
This term is a GP of n terms with common ratio ba
We have to find the sum of this GP. The sum of a GP
The sum of a GP is given by the formula-
r−1a(rn+1−1)Substitutingthevalues−ba−1bn((ba)n+1−1)bn+1bnˉ(a−ban+1−bn+1)bb−abn+1−an+1ˉ
This is the answer.
Hence, the correct option is D.b−abn+1−an+1
Note: To solve this problem, one needs to have a knowledge of a GP and its sum. Also, to find the term an, we need to analyze the binomial expansion properly, and write the expression according to the pattern followed.