Solveeit Logo

Question

Question: If the expansion of \(6^{- 1/3}\left\lbrack 1 - \frac{x}{6} + \frac{2x^{2}}{6^{2}} - .... \right\rbr...

If the expansion of 61/3[1x6+2x262....]6^{- 1/3}\left\lbrack 1 - \frac{x}{6} + \frac{2x^{2}}{6^{2}} - .... \right\rbrack, the coefficient of y will be.

A

2+3x24a2+....2 + \frac{3x^{2}}{4a^{2}} + ....

B

1+3x28a2+....1 + \frac{3x^{2}}{8a^{2}} + ....

C

2+xa+3x24a2+....2 + \frac{x}{a} + \frac{3x^{2}}{4a^{2}} + ....

D

2xa+3x24a22 - \frac{x}{a} + \frac{3x^{2}}{4a^{2}}

Answer

2+xa+3x24a2+....2 + \frac{x}{a} + \frac{3x^{2}}{4a^{2}} + ....

Explanation

Solution

2(5 – r) + (–1) r = 1 256r2\frac{256 - r}{2} 10 – 2r – r = 1 r8\frac{r}{8}

Thus coefficient of y is

\because.