Solveeit Logo

Question

Question: If the equation \(y = m x + c\) and \(x \cos \alpha + y \sin \alpha = p\)represents the same strai...

If the equation y=mx+cy = m x + c and xcosα+ysinα=px \cos \alpha + y \sin \alpha = prepresents the same straight line, then.

A

p=c1+m2p = c \sqrt { 1 + m ^ { 2 } }

B

c=p1+m2c = p \sqrt { 1 + m ^ { 2 } }

C

cp=1+m2c p = \sqrt { 1 + m ^ { 2 } }

D

p2+c2+m2=1p ^ { 2 } + c ^ { 2 } + m ^ { 2 } = 1

Answer

c=p1+m2c = p \sqrt { 1 + m ^ { 2 } }

Explanation

Solution

If the given lines represent the same line, then the length of the perpendiculars from the origin to the lines are equal, so that

c1+m2=\frac { c } { \sqrt { 1 + m ^ { 2 } } } = pcos2α+sin2α\frac { p } { \sqrt { \cos ^ { 2 } \alpha + \sin ^ { 2 } \alpha } }

\Rightarrow c=p1+m2c = p \sqrt { 1 + m ^ { 2 } }.