Question
Mathematics Question on Complex Numbers and Quadratic Equations
If the equation x2+y2−10x+21=0 has real roots x=a and y=β then
A
3≤x≤7
B
3≤y≤7
C
−2≤y≤2
D
−2≤x≤2
Answer
−2≤y≤2
Explanation
Solution
x2−10x+(y2+21)=0
for real roots of x,D≥0
100−4(y2+21)≥0
⇒y2≤4
⇒−2≤y≤2(C)
also, y2=−x2+10x−21
for real roots of y,
−x2+10x−21≥0
⇒(x−7)(x−3)≤0
3≤x≤7(A)