Solveeit Logo

Question

Question: If the equation \[{{\sin }^{4}}x-\left( k+2 \right){{\sin }^{2}}x-\left( k+3 \right)=0\] has a solut...

If the equation sin4x(k+2)sin2x(k+3)=0{{\sin }^{4}}x-\left( k+2 \right){{\sin }^{2}}x-\left( k+3 \right)=0 has a solution, then k must lie in a interval
A.(4,2)\left( -4,-2 \right)
B.[3,2)\left[ -3,2 \right)
C.(4,3)\left( -4,-3 \right)
D.[3,2)\left[ -3,-2 \right)

Explanation

Solution

Hint: Put t=sin2xt={{\sin }^{2}}x to the given equation to get a quadratic equation in ‘t’. Now get the roots of that quadratic equation using the quadratic formula, given as: -
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} for ax2+bx+c=0a{{x}^{2}}+bx+c=0
Now, as t=sin2xt={{\sin }^{2}}x so, put the roots from 0 to 1 as range of sin2x{{\sin }^{2}}x is [0,1]\left[ 0,1 \right] . Get the value of k using this approach.

Complete step-by-step answer:
Given equation in the problem is sin4x(k+2)sin2x(k+3)=0{{\sin }^{4}}x-\left( k+2 \right){{\sin }^{2}}x-\left( k+3 \right)=0 …………………………..(i)
Now, as we can rewrite the above equation as,
(sin2x)2(k+2)sin2x(k+3)=0\Rightarrow {{\left( {{\sin }^{2}}x \right)}^{2}}-\left( k+2 \right){{\sin }^{2}}x-\left( k+3 \right)=0
So, let us suppose t=sin2xt={{\sin }^{2}}x to get the equation in simplified form as
t2(k+2)t(k+3)=0\Rightarrow {{t}^{2}}-\left( k+2 \right)t-\left( k+3 \right)=0 …………………………………(ii)
Now, as we know roots of any quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 is given as
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} ……………………………………(iii)
Hence, we can get roots of the quadratic equation given in equation (ii) are given with the help of above equation as
t=((k+2))±((k+2))24×((k+2))×((k+3))2×1\Rightarrow t=\dfrac{-\left( -\left( k+2 \right) \right)\pm \sqrt{{{\left( -\left( k+2 \right) \right)}^{2}}-4\times \left( -\left( k+2 \right) \right)\times \left( -\left( k+3 \right) \right)}}{2\times 1}
t=(k+2)±(k+2)24×(k+2)(k+3)2\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{{{\left( k+2 \right)}^{2}}-4\times \left( k+2 \right)\left( k+3 \right)}}{2}
t=(k+2)±k2+4k+44(k2+3k+2k+6)2\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{{{k}^{2}}+4k+4-4\left( {{k}^{2}}+3k+2k+6 \right)}}{2}
t=(k+2)±k2+4k+44k220k242\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{{{k}^{2}}+4k+4-4{{k}^{2}}-20k-24}}{2}
t=(k+2)±3k216k202\Rightarrow t=\dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2} ……………………………………………(iv)
Now, as the term 3k216k20-3{{k}^{2}}-16k-20 should be greater than 0 to get the real value of t (t=sin2x)\left( t={{\sin }^{2}}x \right) because it is present in square root form and square root of any negative term will be imaginary. So, we get
3k216k200\Rightarrow -3{{k}^{2}}-16k-20\ge 0
(3k2+16k+20)0\Rightarrow -\left( 3{{k}^{2}}+16k+20 \right)\ge 0
On multiplying the whole equation with '-' sign to both sides, we get
3k2+16k+200\Rightarrow 3{{k}^{2}}+16k+20\le 0
Now, we can factorize the above equation by splitting 16k as 10k+6k10k+6k so that product of 10k and 6k is equal to the product of first and last term i.e. 3k23{{k}^{2}} and 20. Hence, we can rewrite the above equation as
3k2+10k+6k+200\Rightarrow 3{{k}^{2}}+10k+6k+20\le 0
k(3k+10)+2(3k+10)0\Rightarrow k\left( 3k+10 \right)+2\left( 3k+10 \right)\le 0
(k+2)(3k+10)0\Rightarrow \left( k+2 \right)\left( 3k+10 \right)\le 0
3(k+2)(k+103)0\Rightarrow 3\left( k+2 \right)\left( k+\dfrac{10}{3} \right)\le 0
(k+2)(k+103)0\Rightarrow \left( k+2 \right)\left( k+\dfrac{10}{3} \right)\le 0
(k(2))(k(103))0\Rightarrow \left( k-\left( -2 \right) \right)\left( k-\left( -\dfrac{10}{3} \right) \right)\le 0 ……………………………………..(v)
As we know, if (xα)(xβ)0\left( x-\alpha \right)\left( x-\beta \right)\le 0 then x[α,β]x\in \left[ \alpha ,\beta \right] , where α<β\alpha <\beta
Hence, we get values of k from the equation (v) as
k[103,2]\Rightarrow k\in \left[ -\dfrac{10}{3},-2 \right] ……………………………………(vi)
Now, as we know t=sin2xt={{\sin }^{2}}x and we know range of sinx\sin x is given as sinx[1,1]\sin x\in \left[ -1,1 \right] 1sinx1\Rightarrow -1\le \sin x\le 1
So, we get 0sin2x10\le {{\sin }^{2}}x\le 1
Hence, value of t will lie in [0,1]\left[ 0,1 \right] .So, from equation (iv) we get
0t10\le t\le 1
0(k+2)±3k216k20210\le \dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2}\le 1
Multiplying while equation by 2, we get
0(k+2)±3k216k2020\le \left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}\le 2
Adding k2-k-2 to all the sides of equation, we get
k2k+2k2±3k216k202k2\Rightarrow -k-2\le k+2-k-2\pm \sqrt{-3{{k}^{2}}-16k-20}\le 2-k-2
k2±3k216k20k\Rightarrow -k-2\le \pm \sqrt{-3{{k}^{2}}-16k-20}\le -k
On squaring the whole equation, we get the above equation as
(k2)2(±3k216k20)2(k)2\Rightarrow {{\left( -k-2 \right)}^{2}}\le {{\left( \pm \sqrt{-3{{k}^{2}}-16k-20} \right)}^{2}}\le {{\left( -k \right)}^{2}}
k2+4k+43k216k20k2\Rightarrow {{k}^{2}}+4k+4\le -3{{k}^{2}}-16k-20\le {{k}^{2}} …………………………………………………..(vii)
Now, taking the first two terms of the above equation, we get
k2+4k+43k216k20{{k}^{2}}+4k+4\le -3{{k}^{2}}-16k-20
k2+4k+4+3k2+16k+200{{k}^{2}}+4k+4+3{{k}^{2}}+16k+20\le 0
4k2+20k+2404{{k}^{2}}+20k+24\le 0
On dividing the whole equation by 4, we get
k2+5k+60{{k}^{2}}+5k+6\le 0
Factorizing the above equation, we get
k2+3k+2k+60\Rightarrow {{k}^{2}}+3k+2k+6\le 0
k(k+3)+2(k+3)0\Rightarrow k\left( k+3 \right)+2\left( k+3 \right)\le 0
(k+2)(k+3)0\Rightarrow \left( k+2 \right)\left( k+3 \right)\le 0
(k(2))(k(3))0\Rightarrow \left( k-\left( -2 \right) \right)\left( k-\left( -3 \right) \right)\le 0 …………………………………..(viii)
As, we know if (xα)(xβ)0\left( x-\alpha \right)\left( x-\beta \right)\le 0 then x[α,β]x\in \left[ \alpha ,\beta \right] , where α<β\alpha <\beta
Hence, we get value of k from equation (viii), we get
k[3,2]k\in \left[ -3,-2 \right]
Now, taking last two terms of equation (vii), we get
3k216k20k2-3{{k}^{2}}-16k-20\le {{k}^{2}}
0k2+3k2+16k+200\le {{k}^{2}}+3{{k}^{2}}+16k+20
4k2+16k+2004{{k}^{2}}+16k+20\ge 0
On dividing the whole equation by 4, we get
k2+4k+50{{k}^{2}}+4k+5\ge 0 …………………………………….(ix)
Now, as we know discriminant of any quadratic ax2+bx+c=0a{{x}^{2}}+bx+c=0 is given as
D=b24acD={{b}^{2}}-4ac
If roots are real, then D0D\ge 0 and if roots are imaginary, the D<0D<0 .
Now, discriminant of equation (ix) is given as
D=(4)24×5=1620=4\Rightarrow D={{\left( 4 \right)}^{2}}-4\times 5=16-20=-4
D=4\Rightarrow D=-4 i.e. D<0D<0
Hence, roots will not be real so, we cannot factorize equation (ix). So, we can write equation (ix) as
k2+4k+4+10\Rightarrow {{k}^{2}}+4k+4+1\ge 0
(k+2)2+10\Rightarrow {{\left( k+2 \right)}^{2}}+1\ge 0
Now, as (k+2)2{{\left( k+2 \right)}^{2}} will always be positive for any kRk\in R So, equation (ix) will be true for kRk\in R.
Hence, we need to take intersection of k[103,2]k\in \left[ \dfrac{-10}{3},-2 \right] and k[3,2]k\in \left[ -3,-2 \right] and kRk\in R .
Hence, we get the intersection of them as k[3,2]k\in \left[ -3,-2 \right] .
Hence, option (D) is the correct answer.

Note: One may use only D=b24ac>0D={{b}^{2}}-4ac>0 to get the range of k for having real roots of the given equation, which is wrong. As sin2x{{\sin }^{2}}x has a fixed range from 0 to 1. So, finding roots of the given expression will only help to get possible values of k. So, be careful with it.
As sin2x{{\sin }^{2}}x has two possible values in the solution. So, one may think there are two possible inequalities, one when we take positive sign of (k+2)±3k216k202\dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2} and another using negative sign of the above term. It will be a lengthier approach, so put (k+2)±3k216k202\dfrac{\left( k+2 \right)\pm \sqrt{-3{{k}^{2}}-16k-20}}{2} from 0 to 1. It will be less time taking. So, be careful with this step.