Solveeit Logo

Question

Question: If the equation sin (πχ²) - sin(πχ² + 2πχ) = 0 is solved for positive roots, then in the increasing ...

If the equation sin (πχ²) - sin(πχ² + 2πχ) = 0 is solved for positive roots, then in the increasing sequence of positive root

A

first term is 1+72\frac{-1+\sqrt{7}}{2}

B

first term is 1+32\frac{-1+\sqrt{3}}{2}

C

third term is 1

D

third term is 1+112\frac{-1+\sqrt{11}}{2}

Answer

first term is 1+32\frac{-1+\sqrt{3}}{2} and third term is 1

Explanation

Solution

The given equation is sin(πx2)sin(πx2+2πx)=0\sin(\pi x^2) - \sin(\pi x^2 + 2\pi x) = 0. This can be rewritten as sin(πx2)=sin(πx2+2πx)\sin(\pi x^2) = \sin(\pi x^2 + 2\pi x).

The general solution for sinA=sinB\sin A = \sin B is A=nπ+(1)nBA = n\pi + (-1)^n B, where nn is an integer. Let A=πx2A = \pi x^2 and B=πx2+2πxB = \pi x^2 + 2\pi x. So, πx2=nπ+(1)n(πx2+2πx)\pi x^2 = n\pi + (-1)^n (\pi x^2 + 2\pi x). Dividing by π\pi (since π0\pi \neq 0), we get: x2=n+(1)n(x2+2x)x^2 = n + (-1)^n (x^2 + 2x).

We need to consider two cases based on the parity of nn.

Case 1: nn is an even integer. Let n=2kn = 2k for some integer kZk \in \mathbb{Z}. Substituting n=2kn=2k into the equation: x2=2k+(1)2k(x2+2x)x^2 = 2k + (-1)^{2k} (x^2 + 2x) x2=2k+1(x2+2x)x^2 = 2k + 1 \cdot (x^2 + 2x) x2=2k+x2+2xx^2 = 2k + x^2 + 2x 0=2k+2x0 = 2k + 2x 2x=2k2x = -2k x=kx = -k

We are looking for positive roots, so x>0x > 0. Thus, k>0    k<0-k > 0 \implies k < 0. Since kk is an integer, possible values for kk are 1,2,3,-1, -2, -3, \ldots. For k=1k=-1, x=(1)=1x = -(-1) = 1. For k=2k=-2, x=(2)=2x = -(-2) = 2. For k=3k=-3, x=(3)=3x = -(-3) = 3. So, the positive roots from this case are 1,2,3,1, 2, 3, \ldots.

Case 2: nn is an odd integer. Let n=2k+1n = 2k+1 for some integer kZk \in \mathbb{Z}. Substituting n=2k+1n=2k+1 into the equation: x2=(2k+1)+(1)2k+1(x2+2x)x^2 = (2k+1) + (-1)^{2k+1} (x^2 + 2x) x2=(2k+1)(x2+2x)x^2 = (2k+1) - (x^2 + 2x) x2=2k+1x22xx^2 = 2k+1 - x^2 - 2x Rearranging the terms to form a quadratic equation in xx: 2x2+2x(2k+1)=02x^2 + 2x - (2k+1) = 0

Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: x=2±224(2)((2k+1))2(2)x = \frac{-2 \pm \sqrt{2^2 - 4(2)(-(2k+1))}}{2(2)} x=2±4+8(2k+1)4x = \frac{-2 \pm \sqrt{4 + 8(2k+1)}}{4} x=2±4+16k+84x = \frac{-2 \pm \sqrt{4 + 16k + 8}}{4} x=2±16k+124x = \frac{-2 \pm \sqrt{16k + 12}}{4} x=2±4(4k+3)4x = \frac{-2 \pm \sqrt{4(4k + 3)}}{4} x=2±24k+34x = \frac{-2 \pm 2\sqrt{4k + 3}}{4} x=1±4k+32x = \frac{-1 \pm \sqrt{4k + 3}}{2}

For xx to be a real number, the term under the square root must be non-negative: 4k+30    4k3    k3/44k+3 \ge 0 \implies 4k \ge -3 \implies k \ge -3/4. Since kk is an integer, possible values for kk are 0,1,2,3,0, 1, 2, 3, \ldots.

Now, we need to find positive roots (x>0x > 0). Consider x=1+4k+32x = \frac{-1 + \sqrt{4k + 3}}{2}. For x>0x > 0, we need 1+4k+3>0    4k+3>1-1 + \sqrt{4k+3} > 0 \implies \sqrt{4k+3} > 1. Squaring both sides (both are positive), 4k+3>1    4k>2    k>1/24k+3 > 1 \implies 4k > -2 \implies k > -1/2. So, for k=0,1,2,k = 0, 1, 2, \ldots, we get positive roots. For k=0k=0, x=1+4(0)+32=1+32x = \frac{-1 + \sqrt{4(0)+3}}{2} = \frac{-1 + \sqrt{3}}{2}. For k=1k=1, x=1+4(1)+32=1+72x = \frac{-1 + \sqrt{4(1)+3}}{2} = \frac{-1 + \sqrt{7}}{2}. For k=2k=2, x=1+4(2)+32=1+112x = \frac{-1 + \sqrt{4(2)+3}}{2} = \frac{-1 + \sqrt{11}}{2}. And so on.

Consider x=14k+32x = \frac{-1 - \sqrt{4k + 3}}{2}. For xx to be positive, we would need 14k+3>0    1>4k+3-1 - \sqrt{4k+3} > 0 \implies -1 > \sqrt{4k+3}. This is impossible because 4k+3\sqrt{4k+3} is always non-negative. So, this branch yields no positive roots.

Combining all positive roots from both cases: Set of roots S={1,2,3,}{1+32,1+72,1+112,1+152,}S = \{1, 2, 3, \ldots\} \cup \{\frac{-1+\sqrt{3}}{2}, \frac{-1+\sqrt{7}}{2}, \frac{-1+\sqrt{11}}{2}, \frac{-1+\sqrt{15}}{2}, \ldots\}.

To form the increasing sequence, let's approximate the values: 1+321+1.7322=0.7322=0.366\frac{-1+\sqrt{3}}{2} \approx \frac{-1+1.732}{2} = \frac{0.732}{2} = 0.366 1+721+2.6462=1.6462=0.823\frac{-1+\sqrt{7}}{2} \approx \frac{-1+2.646}{2} = \frac{1.646}{2} = 0.823 11 1+1121+3.3172=2.3172=1.1585\frac{-1+\sqrt{11}}{2} \approx \frac{-1+3.317}{2} = \frac{2.317}{2} = 1.1585

Arranging the positive roots in increasing order: 1st term: 1+32\frac{-1+\sqrt{3}}{2} 2nd term: 1+72\frac{-1+\sqrt{7}}{2} 3rd term: 11

Thus, options (B) and (C) are correct.