Question
Mathematics Question on Parabola
If the equation of the parabola, whose vertex is at (5,4) and the directrix is 3x+y–29=0, is x2+ay2+bxy+cx+dy+k=0, then a+b+c+d+k is equal to
A
575
B
-575
C
576
D
-576
Answer
-576
Explanation
Solution
Given vertex is (5,4) and directrix 3x+y–29=0
Let foot of perpendicular of (5,4) on directrix be (x1,y1).
3x1−5=1y1−4=10−(−10)
∴(x1,y1)=(8,5)
So, focus of parabola will be S= (2,3)
Let P(x,y) be any point on parabola, then
(x−2)2+(y−3)2=10(3x+y−29)2
⇒10(x2+y2−4x−6y+13)=9x2+y2+841+6xy−58y−174x
⇒x2+9y2−6xy+134x−2y−711=0
and given parabola
x2+ay2+bxy+cx+dy+k=0
∴a=9,b=–6,c=134,d=–2,k=–711
∴a+b+c+d+k=–576