Solveeit Logo

Question

Mathematics Question on Parabola

If the equation of the parabola, whose vertex is at (5,4)(5, 4) and the directrix is 3x+y29=03x + y – 29 = 0, is x2+ay2+bxy+cx+dy+k=0x^2 + ay^2 + bxy + cx + dy + k = 0, then a+b+c+d+ka + b + c + d + k is equal to

A

575

B

-575

C

576

D

-576

Answer

-576

Explanation

Solution

Given vertex is (5,4)(5, 4) and directrix 3x+y29=03x + y – 29 = 0

Let foot of perpendicular of (5,4)(5, 4) on directrix be (x1,y1)(x_1, y_1).

x153=y141=(10)10\frac{x_1−5}{3}=\frac{y_1−4}{1}=\frac{−(−10)}{10}

(x1,y1)=(8,5)∴ (x_1, y_1) = (8, 5)

So, focus of parabola will be SS = (2,3)(2, 3)

Let P(x,y)P(x, y) be any point on parabola, then

(x2)2+(y3)2=(3x+y29)210(x−2)^2+(y−3)^2=\frac{(3x+y−29)^2}{10}

10(x2+y24x6y+13)=9x2+y2+841+6xy58y174x⇒10(x^2+y^2−4x−6y+13)=9x2^+y^2+841+6xy−58y−174x

x2+9y26xy+134x2y711=0⇒x^2+9y^2−6xy+134x−2y−711=0

and given parabola

x2+ay2+bxy+cx+dy+k=0x^2+ay^2+bxy+cx+dy+k=0

a=9,b=6,c=134,d=2,k=711∴ a = 9, b = –6, c = 134, d = –2, k = –711

a+b+c+d+k=576∴ a + b + c + d + k = –576