Question
Question: If the equation of the locus of a point equidistant from the points \((a_{1},b_{1})\) and \((a_{2},b...
If the equation of the locus of a point equidistant from the points (a1,b1) and (a2,b2) is
(a1−a2)x+(b1−b2)y+c=0, then the value of c is.
A
a12−a22+b12−b22
B
a12+b12−a22−b22
C
21(a12+a22+b12+b22)
D
21(a22+b22−a12−b12)
Answer
21(a22+b22−a12−b12)
Explanation
Solution
Let (h,k) be the point on the locus, then by the given conditions
(h−a1)2+(k−b1)2=(h−a2)2+(k−b2)2
⇒2h(a1−a2)+2k(b1−b2)+a22+b22−a12−b12=0
⇒h(a1−a2)+k(b1−b2)+21(a22+b22−a12−b12)=0 ...(i)
Also, since (h, k) lies on the given locus, therefore
(a1−a2)h+(b1−b2)k+c=0 ....(ii)
Comparing (i) and (ii), we get
c=21(a22+b22−a12−b12).