Question
Question: If the equation of a line through a point **a** and parallel to vector **b** is \(\mathbf{r} = \math...
If the equation of a line through a point a and parallel to vector b is r=a+tb, where t is a parameter, then its perpendicular distance from the point c is
A
∣(c−b)×a∣÷∣a∣
B
∣(c−a)×b∣÷∣b∣
C
∣(a−b)×c∣÷∣c∣
D
∣(a−b)×c∣÷∣a+c∣
Answer
∣(c−a)×b∣÷∣b∣
Explanation
Solution
For point P on the line r=a+tb
∴PC→=(c−a)−tb, ∵PC→⊥b
∴∣(c−a)−tb∣.b=0 or t=b2(c−a).b …..(i)

Distance of c from line ∣PC→∣6mu=d=∣c−a−tb∣
d=c−a−b2(c−a).bb=b2(c−a)b.b−(c−a).bb
d=b2b×(c−a)×b=∣b∣2∣b∣∣(c−a)×b∣sin90∘,
(∵b⊥(c−a)×b)
d=∣b∣∣(c−a)×b∣.