Solveeit Logo

Question

Question: If the equation of a line through a point **a** and parallel to vector **b** is \(\mathbf{r} = \math...

If the equation of a line through a point a and parallel to vector b is r=a+tb,\mathbf{r} = \mathbf{a} + t\mathbf{b}, where t is a parameter, then its perpendicular distance from the point c is

A

(cb)×a÷a|(\mathbf{c} - \mathbf{b}) \times \mathbf{a}| \div |\mathbf{a}|

B

(ca)×b÷b|(\mathbf{c} - \mathbf{a}) \times \mathbf{b}| \div |\mathbf{b}|

C

(ab)×c÷c|(\mathbf{a} - \mathbf{b}) \times \mathbf{c}| \div |\mathbf{c}|

D

(ab)×c÷a+c|(\mathbf{a} - \mathbf{b}) \times \mathbf{c}| \div |\mathbf{a} + \mathbf{c}|

Answer

(ca)×b÷b|(\mathbf{c} - \mathbf{a}) \times \mathbf{b}| \div |\mathbf{b}|

Explanation

Solution

For point PP on the line r=a+tbr = \mathbf{a} + t\mathbf{b}

PC=(ca)tb\therefore\overset{\rightarrow}{PC} = (\mathbf{c} - \mathbf{a}) - t\mathbf{b}, PCb\because\overset{\rightarrow}{PC}\bot\mathbf{b}

(ca)tb.b=0\therefore|(\mathbf{c} - \mathbf{a}) - t\mathbf{b}|.\mathbf{b} = 0 or t=(ca).bb2t = \frac{(\mathbf{c} - \mathbf{a}).\mathbf{b}}{\mathbf{b}^{2}} …..(i)

Distance of c\mathbf{c} from line PC6mu=d=catb|\overset{\rightarrow}{PC}|\mspace{6mu} = d = |\mathbf{c} - \mathbf{a} - t\mathbf{b}|

d=ca(ca).bbb2=(ca)b.b(ca).bbb2d = \left| \mathbf{c} - \mathbf{a} - \frac{(\mathbf{c} - \mathbf{a}).\mathbf{bb}}{\mathbf{b}^{2}} \right| = \left| \frac{(\mathbf{c} - \mathbf{a})\mathbf{b}.\mathbf{b} - (\mathbf{c} - \mathbf{a}).\mathbf{bb}}{\mathbf{b}^{2}} \right|

d=b×(ca)×bb2=b(ca)×bsin90b2d = \left| \frac{\mathbf{b} \times (\mathbf{c} - \mathbf{a}) \times \mathbf{b}}{\mathbf{b}^{2}} \right| = \frac{|\mathbf{b}||(\mathbf{c} - \mathbf{a}) \times \mathbf{b}|\sin 90{^\circ}}{|\mathbf{b}|^{2}},

(b(ca)×b)(\because\mathbf{b}\bot(\mathbf{c} - \mathbf{a}) \times \mathbf{b})

d=(ca)×bbd = \frac{|(\mathbf{c} - \mathbf{a}) \times \mathbf{b}|}{|\mathbf{b}|}.