Solveeit Logo

Question

Question: If the equation \(\left( {{m}^{2}}+{{n}^{2}} \right){{x}^{2}}-2\left( mp+nq \right)x+{{p}^{2}}+{{q}^...

If the equation (m2+n2)x22(mp+nq)x+p2+q2=0\left( {{m}^{2}}+{{n}^{2}} \right){{x}^{2}}-2\left( mp+nq \right)x+{{p}^{2}}+{{q}^{2}}=0 has equal roots, then
[a] mp = nq
[b] mq = np
[c] mn = pq
[d] mq=npmq=\sqrt{np}

Explanation

Solution

Hint: Assume that the roots of the equation are α,α\alpha ,\alpha . Hence using the sum of roots =ba=\dfrac{-b}{a} and product of roots =ca=\dfrac{c}{a}, where a,b and c have their usual meanings form two equations in α\alpha . One of the equations will be linear in α\alpha , and one will be quadratic in α\alpha . Substitute the value of α\alpha from the linear equation in the quadratic equation in α\alpha and find the relation between m, n, p and q.
Alternatively, use the fact that when roots are equal, then Discriminant of that quadratic equation is 0.

Complete step-by-step solution -

Let the roots of the quadratic equation be α.α\alpha .\alpha
Hence we have
α+α=2(mp+nq)m2+n2 α=mp+nqm2+n2 (i) \begin{aligned} & \alpha +\alpha =\dfrac{2\left( mp+nq \right)}{{{m}^{2}}+{{n}^{2}}} \\\ & \Rightarrow \alpha =\dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}}\text{ (i)} \\\ \end{aligned}
Also, we have
α×α=p2+q2m2+n2 α2=p2+q2m2+n2 (ii) \begin{aligned} & \alpha \times \alpha =\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}} \\\ & \Rightarrow {{\alpha }^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}\text{ (ii)} \\\ \end{aligned}
Substituting the value of α\alpha from equation (ii) in equation (i), we get
(mp+nqm2+n2)2=p2+q2m2+n2{{\left( \dfrac{mp+nq}{{{m}^{2}}+{{n}^{2}}} \right)}^{2}}=\dfrac{{{p}^{2}}+{{q}^{2}}}{{{m}^{2}}+{{n}^{2}}}
Multiplying both sides by (m2+n2)2{{\left( {{m}^{2}}+{{n}^{2}} \right)}^{2}}, we get
(mp+nq)2=(p2+q2)(m2+n2){{\left( mp+nq \right)}^{2}}=\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)
Using (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}, we get
(mp)2+(nq)2+2(mp)(nq)=p2m2+p2n2+q2m2+q2n2{{\left( mp \right)}^{2}}+{{\left( nq \right)}^{2}}+2\left( mp \right)\left( nq \right)={{p}^{2}}{{m}^{2}}+{{p}^{2}}{{n}^{2}}+{{q}^{2}}{{m}^{2}}+{{q}^{2}}{{n}^{2}}
Using (ab)n=anbn{{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}, we get
m2p2+n2q2+2mnpq=m2p2+n2q2+m2q2+n2p2{{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+2mnpq={{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}}+{{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}
Subtracting m2p2+n2q2{{m}^{2}}{{p}^{2}}+{{n}^{2}}{{q}^{2}} from both sides, we get
2mnpq=m2q2+n2p22mnpq={{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}
Subtracting 2mnpq from both sides, we get
m2q2+n2p22mnpq=0{{m}^{2}}{{q}^{2}}+{{n}^{2}}{{p}^{2}}-2mnpq=0
Using anbn=(ab)n{{a}^{n}}{{b}^{n}}={{\left( ab \right)}^{n}}, we get
(mq)2+(np)22(mq)(np)=0{{\left( mq \right)}^{2}}+{{\left( np \right)}^{2}}-2\left( mq \right)\left( np \right)=0
Using a2+b22ab=(ab)2{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}, we get
(mqnp)2=0{{\left( mq-np \right)}^{2}}=0
Using zero product property, we get
mq=npmq=np
Hence option [b] is correct.

Note: Alternative solution:
We know that the roots of the quadratic expression ax2+bx+c=0a{{x}^{2}}+bx+c=0 are equal when D=b24ac=0D={{b}^{2}}-4ac=0
Here a=m2+n2,b=2(mp+nq)a={{m}^{2}}+{{n}^{2}},b=-2\left( mp+nq \right) and c=p2+q2c={{p}^{2}}+{{q}^{2}}
Hence we have
4(mp+nq)24(p2+q2)(m2+n2)=0 (mp+nq)2(p2+q2)(m2+n2)=0 \begin{aligned} & 4{{\left( mp+nq \right)}^{2}}-4\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\\ & \Rightarrow {{\left( mp+nq \right)}^{2}}-\left( {{p}^{2}}+{{q}^{2}} \right)\left( {{m}^{2}}+{{n}^{2}} \right)=0 \\\ \end{aligned}
Let z1=piq{{z}_{1}}=p-iq and z2=m+in{{z}_{2}}=m+in
Now we have z1z2=(mp+nq)+i(npmq){{z}_{1}}{{z}_{2}}=\left( mp+nq \right)+i\left( np-mq \right)
Taking modulus on both sides, we get
z1z2=(mp+nq)+i(npmq) (m2+n2)(p2+q2)=(mp+nq)2+(npmq)2 (m2+n2)(p2+q2)=(mp+nq)2+(npmq)2 \begin{aligned} & \left| {{z}_{1}}{{z}_{2}} \right|=\left| \left( mp+nq \right)+i\left( np-mq \right) \right| \\\ & \Rightarrow \sqrt{\left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)}=\sqrt{{{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}}} \\\ & \Rightarrow \left( {{m}^{2}}+{{n}^{2}} \right)\left( {{p}^{2}}+{{q}^{2}} \right)={{\left( mp+nq \right)}^{2}}+{{\left( np-mq \right)}^{2}} \\\ \end{aligned}
Hence we have
(mp+nq)2(mp+nq)2(npmq)2=0 (npmq)2=0 np=mq \begin{aligned} & {{\left( mp+nq \right)}^{2}}-{{\left( mp+nq \right)}^{2}}-{{\left( np-mq \right)}^{2}}=0 \\\ & \Rightarrow {{\left( np-mq \right)}^{2}}=0 \\\ & \Rightarrow np=mq \\\ \end{aligned}
Hence option [b] is correct.