Solveeit Logo

Question

Question: If the equation \(ax^{2} + 2hxy + by^{2} = 0\) represents two lines \(y = m_{1}x\) and \(y = m_{2}x\...

If the equation ax2+2hxy+by2=0ax^{2} + 2hxy + by^{2} = 0 represents two lines y=m1xy = m_{1}x and y=m2xy = m_{2}x, then

A

m1+m2=2hbm_{1} + m_{2} = \frac{- 2h}{b} and m1m2=abm_{1}m_{2} = \frac{a}{b}

B

m1+m2=2hbm_{1} + m_{2} = \frac{2h}{b} and m1m2=abm_{1}m_{2} = \frac{- a}{b}

C

m1+m2=2hbm_{1} + m_{2} = \frac{2h}{b} and m1m2=abm_{1}m_{2} = \frac{a}{b}

D

m1+m2=2hbm_{1} + m_{2} = \frac{2h}{b} and m1m2=abm_{1}m_{2} = - ab

Answer

m1+m2=2hbm_{1} + m_{2} = \frac{- 2h}{b} and m1m2=abm_{1}m_{2} = \frac{a}{b}

Explanation

Solution

It is a fundamental concept.