Solveeit Logo

Question

Question: If the ellipse \(\frac { x ^ { 2 } } { a ^ { 2 } }\) + \(\frac { \mathrm { y } ^ { 2 } } { \mathrm ...

If the ellipse x2a2\frac { x ^ { 2 } } { a ^ { 2 } } + y2 b2\frac { \mathrm { y } ^ { 2 } } { \mathrm {~b} ^ { 2 } } = 1 meets x-axis in A and y-axis in B in first quadrant, then area between the arc AB and the chord AB of the ellipse is –

A

12\frac { 1 } { 2 }ab (p + 2)

B

14\frac { 1 } { 4 } ab (p – 2)

C

14\frac { 1 } { 4 } ab (p – 4)

D

None of these

Answer

14\frac { 1 } { 4 } ab (p – 2)

Explanation

Solution

x2a2\frac { x ^ { 2 } } { a ^ { 2 } } + = 1 … (1) Ž y = ±

Equation of chord AB is y – 0 = b00a\frac { b - 0 } { 0 - a } (x – a) or

y = – (x – a) … (2)

\ Required

Area = 0a{baa2x2(ba)(xa)}dx\int _ { 0 } ^ { a } \left\{ \frac { b } { a } \sqrt { a ^ { 2 } - x ^ { 2 } } - \left( - \frac { b } { a } \right) ( x - a ) \right\} d x

=

= (p – 2). (sin11=π2)\left( \because \sin ^ { - 1 } 1 = \frac { \pi } { 2 } \right)