Solveeit Logo

Question

Chemistry Question on Atomic Models

If the electron's position is measured within an accuracy of + 0.002 nm, calculate the uncertainty in the electron's momentum. Suppose the momentum of the electron is h4πm\frac{h}{4\pi m} × 0.05 nm, is there any problem in defining this value?

Answer

From Heisenberg's uncertainty principle,
Δx × Δp =h4π\frac{h}{4\pi} ⇒ Δp = 1Δx\frac{1}{\Delta x} . h4π\frac{h}{4\pi}
Where, Δx = uncertainty in the position of the electron
Δp = uncertainty in momentum of the electron
Substituting the values in the expression of Δp:
Δp = 10.002\frac{1}{0.002}nm × 6.626×1034Js4×(3.14)\frac{6.626 × 10^{-34 Js}}{ 4 × (3.14)}
= 2.637 × 10-23 Js-1
Δp = 2.637 × 1023 kgms (1 J = 1 kgms 2s)
∴ Uncertainty in the momentum of the electron = 2.637 × 1023 kgms-1.
Actual momentum = h4πm\frac{h}{4\pi m}× 0.05 nm
=6.626×1034Js4×3.14×5.0×1011m\frac{ 6.626 × 10^{-34} Js}{4 × 3.14 × 5.0 × 10^ {-11} m}
= 1.055 × 10-24 kgms-1
Since the magnitude of the actual momentum is smaller than the uncertainty, the value cannot be defined .