Solveeit Logo

Question

Physics Question on Electric charges and fields

If the electric flux entering and leaving an enclosed surface respectively are ϕ1\phi_{1} and ϕ2\phi_{2}, the electric charge inside the surface will be

A

ϕ2ϕ1ε0\frac{\phi_{2}-\phi_{1}}{\varepsilon_{0}}

B

ϕ1+ϕ2ε0\frac{\phi_{1}+\phi_{2}}{\varepsilon_{0}}

C

ϕ1ϕ2ε0\frac{\phi_{1}-\phi_{2}}{\varepsilon_{0}}

D

ε0(ϕ1+ϕ2)\varepsilon_{0}\left(\phi_{1}+\phi_{2}\right)

Answer

ε0(ϕ1+ϕ2)\varepsilon_{0}\left(\phi_{1}+\phi_{2}\right)

Explanation

Solution

According to this law, the net electric flux through any dosed surface is equal to the net charge inside the surface divided by ε0\varepsilon_{0}''.
Therefore, ϕ=qε0\phi=\frac{q}{\varepsilon_{0}}
Let q1-q_{1} be the charge, due to which flux ϕ1\phi_{1} is entering the surface
ϕ=q1ε0\therefore \phi=\frac{-q_{1}}{\varepsilon_{0}}
or q1=ε0ϕ1-q_{1}=\varepsilon_{0} \phi_{1}
Let +q2+q_{2} be the charge, due to which flux ϕ2\phi_{2} is leaving, the surface
ϕ2=q2ε0\therefore \phi_{2}=\frac{q_{2}}{\varepsilon_{0}}
or q2=ε0ϕ2q_{2}=\varepsilon_{0} \phi_{2}
So, electric charge inside the surface
=q2q1=q_{2}-q_{1}
=ε0ϕ2+ε0ϕ1=\varepsilon_{0} \,\phi_{2}+\varepsilon_{0} \,\phi_{1}
=ε0(ϕ2+ϕ1)=\varepsilon_{0}\left(\phi_{2}+\phi_{1}\right)