Solveeit Logo

Question

Question: If the eccentricity of the hyperbola x<sup>2</sup> – y<sup>2</sup>sec<sup>2</sup>θ = 4 is \(\sqrt{3}...

If the eccentricity of the hyperbola x2 – y2sec2θ = 4 is 3\sqrt{3} times the eccentricity of the ellipse x2sec2θ + y2 = 16 the value of θ equals

A

π/6

B

3π/4

C

π/3

D

π/2

Answer

3π/4

Explanation

Solution

Given x2 – y2sec2θ = 4

x24y24cos2θ=16muand6mux216cos2θ+y216=1\frac{x^{2}}{4} - \frac{y^{2}}{4\cos^{2}\theta} = 1\mspace{6mu} and\mspace{6mu}\frac{x^{2}}{16\cos^{2}\theta} + \frac{y^{2}}{16} = 1According to problem 4+4cos2θ4=3(1616cos2θ16)\frac{4 + 4\cos^{2}\theta}{4} = 3\left( \frac{16 - 16\cos^{2}\theta}{16} \right)

⇒ 1 + cos2θ = 3(1 – cos2θ)

⇒ 4cos2θ = 2

cosθ = ±12\pm \frac{1}{\sqrt{2}}

θ = π/4, 3π4\frac{3\pi}{4}