Solveeit Logo

Question

Question: If the eccentricity of the hyperbola \[{{x}^{2}}-{{y}^{2}}{{\sec }^{2}}\text{ }\\!\\!\alpha\\!\\!\te...

If the eccentricity of the hyperbola x2y2sec2 !!α!! =5{{x}^{2}}-{{y}^{2}}{{\sec }^{2}}\text{ }\\!\\!\alpha\\!\\!\text{ }=5 is 3\sqrt{3} times the eccentricity of the ellipse x2sec2 !!α!! +y2=25{{x}^{2}}{{\sec }^{2}}\text{ }\\!\\!\alpha\\!\\!\text{ }+{{y}^{2}}=25 , then the value of α\alpha is
a) π6\dfrac{\pi }{6}
b) π4\dfrac{\pi }{4}
c) π3\dfrac{\pi }{3}
d) π2\dfrac{\pi }{2}

Explanation

Solution

Hint: Since the give equation of ellipse is x2sec2α+y2=25{{x}^{2}}{{\sec }^{2}}\alpha +{{y}^{2}}=25 and hyperbola is x2y2sec2α=5{{x}^{2}}-{{y}^{2}}{{\sec }^{2}}\alpha =5 .Convert the given equations into standard form of equation of ellipse and hyperbola:

Standard form of ellipse and hyperbola are given below:

Ellipse: (xh)2a2+(yk)2b2=1\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1

Hyperbola:

for a > b : (xh)2a2(yk)2b2= for\text{ }a\text{ }>\text{ }b\text{ }:\text{ }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=

for a < b : (yk)2b2(xh)2a2=1for\text{ }a\text{ }<\text{ }b\text{ }:\text{ }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1

Then try to find the eccentricity for both the conic sections using the formula to find eccentricity. Eccentricity of both the conic sections is given below:

Ellipse:

for a > b : e=1b2a2  for\text{ }a\text{ }>\text{ }b\text{ }:\text{ }e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}\text{ }

for a < b : e=1b2a2for\text{ }a\text{ }<\text{ }b\text{ }:\text{ }e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}

Hyperbola: e=a2+b2ae=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}}{a}

After finding the eccentricity of both the equation in terms of α\alpha , equate the eccentricity of the hyperbola to 3\sqrt{3} times the eccentricity of the ellipse and find the value of α\alpha .

Complete step by step answer:

We have equation of ellipse as: x2sec2α+y2=25{{x}^{2}}{{\sec }^{2}}\alpha +{{y}^{2}}=25as shown in the diagram above.

By dividing the above equation by 25, we can write it as:

x25y25cos2α=1......(6)\Rightarrow \dfrac{{{x}^{2}}}{5}-\dfrac{{{y}^{2}}}{5{{\cos }^{2}}\alpha }=1......(6)

Since sec2α=1cos2α{{\sec }^{2}}\alpha =\dfrac{1}{{{\cos }^{2}}\alpha }; we can write equation (1) as:

x225cos2α+y225=1......(2)\Rightarrow \dfrac{{{x}^{2}}}{25{{\cos }^{2}}\alpha }+\dfrac{{{y}^{2}}}{25}=1......(2)

Where a2=25cos2α{{a}^{2}}=25{{\cos }^{2}}\alpha and b2=25{{b}^{2}}=25

So, using the formula to find eccentricity of an ellipse: e=1a2b2e=\sqrt{1-\dfrac{{{a}^{2}}}{{{b}^{2}}}}, the eccentricity of the ellipse x2sec2α+y2=25{{x}^{2}}{{\sec }^{2}}\alpha +{{y}^{2}}=25 can be written as:

e=125cos2α25e=\sqrt{1-\dfrac{25{{\cos }^{2}}\alpha }{25}}

=1cos2α =\sqrt{1-{{\cos }^{2}}\alpha }......(3)

Since cos2α+sin2α=1{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1

We can write equation (3) as:

e=sin2αe=\sqrt{{{\sin }^{2}}\alpha }

=sinα=\sin \alpha......(4)

Now, we have equation of hyperbola as: x2y2sec2α=5{{x}^{2}}-{{y}^{2}}{{\sec }^{2}}\alpha =5 as shown in the figure above.

By dividing the above equation by 5, we can write it as:

x25y2sec2α5=1......(5)\Rightarrow \dfrac{{{x}^{2}}}{5}-\dfrac{{{y}^{2}}{{\sec }^{2}}\alpha }{5}=1......(5)

Sincesec2α=1cos2α{{\sec }^{2}}\alpha =\dfrac{1}{{{\cos }^{2}}\alpha }; we can write equation (5) as:

x25y25cos2α=1......(6)\Rightarrow \dfrac{{{x}^{2}}}{5}-\dfrac{{{y}^{2}}}{5{{\cos }^{2}}\alpha }=1......(6)

Where a2=5{{a}^{2}}=5 and b2=5cos2α{{b}^{2}}=5{{\cos }^{2}}\alpha

So, using the formula to find eccentricity of hyperbola e=a2+b2ae=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}}{a}, the eccentricity of hyperbola x2y2sec2α=5{{x}^{2}}-{{y}^{2}}{{\sec }^{2}}\alpha =5 can be written as:

e=1+cos2α.....(7)e=\sqrt{1+{{\cos }^{2}}\alpha }.....(7)

As we know that, the eccentricity of the hyperbola is 3\sqrt{3} times the eccentricity of the ellipse.

So, we get a relation between equation (4) and equation (7) as:

3×sinα=1+cos2α......(8)\sqrt{3}\times \sin \alpha =\sqrt{1+{{\cos }^{2}}\alpha }......(8)

Square both the sides of equation (8), we get:

3sin2α=(1+cos2α)......(9)3{{\sin }^{2}}\alpha =\left( 1+{{\cos }^{2}}\alpha \right)......(9)

Since cos2α+sin2α=1{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1

We can write equation (9) as:

3sin2α=(1+1sin2α)\Rightarrow 3{{\sin }^{2}}\alpha =\left( 1+1-{{\sin }^{2}}\alpha \right)

4sin2α=2\Rightarrow 4{{\sin }^{2}}\alpha =2

sin2α=12\Rightarrow {{\sin }^{2}}\alpha =\dfrac{1}{2}

sinα=12\Rightarrow \sin \alpha =\dfrac{1}{\sqrt{2}}

Since sinπ4=12\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}

Therefore, α=π4\alpha =\dfrac{\pi }{4}

So, the correct answer is “Option B”.

Note: It is easier to solve the equations regarding any conic section if they are simplified into their standard form. Otherwise, you may get a complicated equation as a result. So, always try to simplify the given equation of a conic section into its standard form.

Try to apply simplified trigonometric identities, else it might complicate the question.