Solveeit Logo

Question

Mathematics Question on Conic sections

If the eccentricity of a hyperbola is 5/3, then the eccentricity of its conjugate is

A

44684

B

44685

C

5

D

non existent

Answer

44685

Explanation

Solution

Eccentricity of hyperbola is 53\frac{5}{3}
Let e1e_1 = eccentricity of hyperbola x2a2y2b2=1 \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 and e2e_2 = eccentricity of its conjugate y2b2x2a2=1\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1
e1=b2a2+1e_{1} = \sqrt{\frac{b^{2}}{a^{2}} +1} and e2=a2b2+1e_{2} = \sqrt{\frac{a^{2}}{b^{2}} + 1} given that e1=53e_{1} = \frac{5}{3}
259=b2a2+1b2a2+1b2a2=2591=169\therefore \:\:\: \frac{25}{9} =\frac{b^{2}}{a^{2}} + 1 \Rightarrow \frac{b^{2}}{a^{2}} + 1 \Rightarrow \frac{b^{2}}{a^{2}} = \frac{25}{9} - 1 = \frac{16}{9}
e2=916+1=2516=54\therefore \:\:\: e_{2} = \sqrt{\frac{9}{16}+1} = \sqrt{\frac{25}{16} } = \frac{5}{4}