Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If the domain of the function sin1(3x222x19)+loge(3x28x+5x23x10)\sin^{-1} \left( \frac{3x - 22}{2x - 19} \right) + \log_e \left( \frac{3x^2 - 8x + 5}{x^2 - 3x - 10} \right) is (α,β](\alpha, \beta], then 3α+10β3\alpha + 10\beta is equal to:

A

97

B

100

C

95

D

98

Answer

97

Explanation

Solution

Domain of the sin1\sin^{-1} Function:
For sin1(3x222x19)\sin^{-1}\left(\frac{3x - 22}{2x - 19}\right) to be defined, the argument 3x222x19\frac{3x - 22}{2x - 19} must satisfy:
13x222x191-1 \leq \frac{3x - 22}{2x - 19} \leq 1
Solving this inequality involves two cases:

Case 1: 3x222x191\frac{3x - 22}{2x - 19} \leq 1
3x222x19    x33x - 22 \leq 2x - 19 \implies x \leq 3
Case 2: 3x222x191\frac{3x - 22}{2x - 19} \geq -1
3x222x+19    5x41    x4153x - 22 \geq -2x + 19 \implies 5x \geq 41 \implies x \geq \frac{41}{5}
Therefore, the solution for the sin1\sin^{-1} function domain is:
x[415,3]x \in \left[\frac{41}{5}, 3\right]

Domain of the loge\log_e Function:
For loge(3x28x+5x23x10)\log_e\left(\frac{3x^2 - 8x + 5}{x^2 - 3x - 10}\right) to be defined, the argument 3x28x+5x23x10\frac{3x^2 - 8x + 5}{x^2 - 3x - 10} must be positive:
3x28x+5x23x10>0\frac{3x^2 - 8x + 5}{x^2 - 3x - 10} > 0
Factorize both the numerator and denominator: (3x5)(x1)(x5)(x+2)>0\frac{(3x - 5)(x - 1)}{(x - 5)(x + 2)} > 0
Determine the intervals where this inequality holds by testing values between the critical points x=2,1,5,53x = -2, 1, 5, \frac{5}{3}.

The valid intervals are: x(53,1)(5,)x \in \left(\frac{5}{3}, 1\right) \cup (5, \infty)

Intersection of the Domains:
The domain of the combined function is the intersection of the two domains:
x[415,3](53,1)(5,)x \in \left[\frac{41}{5}, 3\right] \cap \left(\frac{5}{3}, 1\right) \cup (5, \infty) This simplifies to: x[415,3]x \in \left[\frac{41}{5}, 3\right]

Calculate 3α+10β3\alpha + 10\beta:
Here, α=415\alpha = \frac{41}{5} and β=3\beta = 3.

Then: 3α+10β=3×415+10×3=1235+30=973\alpha + 10\beta = 3 \times \frac{41}{5} + 10 \times 3 = \frac{123}{5} + 30 = 97