Solveeit Logo

Question

Question: If the domain of the function $g(x) = \log_e (\frac{2x+3}{4x^2+x-3}) + \cos^{-1}(\frac{2x-1}{x+2})$ ...

If the domain of the function g(x)=loge(2x+34x2+x3)+cos1(2x1x+2)g(x) = \log_e (\frac{2x+3}{4x^2+x-3}) + \cos^{-1}(\frac{2x-1}{x+2}) is (α,β](\alpha, \beta] and f:[0,3]Af : [0, 3] \rightarrow A defined by f(x)=2x315x2+36x+4α+β+1f(x) = 2x^3 - 15x^2 + 36x + 4\alpha + \beta + 1 is onto, then the number of integers in the set AA is equal to

A

27

B

28

C

29

D

30

Answer

29

Explanation

Solution

Here's how to solve this problem step-by-step:

1. Find the domain of g(x):

The function g(x)g(x) has two parts: a logarithm and an inverse cosine. We need to consider the restrictions on each part.

  • Logarithm: The argument of the logarithm must be positive: 2x+34x2+x3>0\frac{2x+3}{4x^2+x-3} > 0

    • Factor the denominator: 4x2+x3=(4x3)(x+1)4x^2 + x - 3 = (4x - 3)(x + 1)

    • So, we need to solve 2x+3(4x3)(x+1)>0\frac{2x+3}{(4x-3)(x+1)} > 0. Find critical points: x=32,1,34x = -\frac{3}{2}, -1, \frac{3}{4}

    • Test intervals to find where the expression is positive: x(32,1)(34,)x \in (-\frac{3}{2}, -1) \cup (\frac{3}{4}, \infty)

  • Inverse Cosine: The argument of the inverse cosine must be between -1 and 1: 12x1x+21-1 \le \frac{2x-1}{x+2} \le 1

    • Solve the two inequalities:

      • 2x1x+21x3x+20x(2,3]\frac{2x-1}{x+2} \le 1 \Rightarrow \frac{x-3}{x+2} \le 0 \Rightarrow x \in (-2, 3]

      • 2x1x+213x+1x+20x(,2)[13,)\frac{2x-1}{x+2} \ge -1 \Rightarrow \frac{3x+1}{x+2} \ge 0 \Rightarrow x \in (-\infty, -2) \cup [-\frac{1}{3}, \infty)

    • The domain for the inverse cosine is the intersection of these two solutions: [13,3][-\frac{1}{3}, 3]

  • Overall Domain: The domain of g(x)g(x) is the intersection of the domains of the logarithm and the inverse cosine:

    • ((32,1)(34,))[13,3]=(34,3]((-\frac{3}{2}, -1) \cup (\frac{3}{4}, \infty)) \cap [-\frac{1}{3}, 3] = (\frac{3}{4}, 3]

    • Therefore, α=34\alpha = \frac{3}{4} and β=3\beta = 3

2. Define the function f(x) and find its range:

  • Substitute α\alpha and β\beta into the expression for f(x)f(x):

    • f(x)=2x315x2+36x+4(34)+3+1=2x315x2+36x+7f(x) = 2x^3 - 15x^2 + 36x + 4(\frac{3}{4}) + 3 + 1 = 2x^3 - 15x^2 + 36x + 7
  • Find the critical points of f(x)f(x) by taking the derivative and setting it to zero:

    • f(x)=6x230x+36=6(x25x+6)=6(x2)(x3)f'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6) = 6(x-2)(x-3)

    • Critical points: x=2,3x = 2, 3

  • Evaluate f(x)f(x) at the endpoints of the interval [0, 3] and at the critical points:

    • f(0)=7f(0) = 7

    • f(2)=2(8)15(4)+36(2)+7=1660+72+7=35f(2) = 2(8) - 15(4) + 36(2) + 7 = 16 - 60 + 72 + 7 = 35

    • f(3)=2(27)15(9)+36(3)+7=54135+108+7=34f(3) = 2(27) - 15(9) + 36(3) + 7 = 54 - 135 + 108 + 7 = 34

  • The range of f(x)f(x) on [0, 3] is [7, 35]. Since ff is onto, A=[7,35]A = [7, 35].

3. Find the number of integers in the set A:

  • The integers in the set [7, 35] are 7, 8, 9, ..., 35.

  • The number of integers is 357+1=2935 - 7 + 1 = 29.

Therefore, the number of integers in the set AA is 29.