Solveeit Logo

Question

Question: If the domain of the function $f(x) = \log_e (4x^2 + 11x + 6) + \sin^{-1}(4x + 3) + \cos^{-1}(\frac...

If the domain of the function

f(x)=loge(4x2+11x+6)+sin1(4x+3)+cos1(10x+63)f(x) = \log_e (4x^2 + 11x + 6) + \sin^{-1}(4x + 3) + \cos^{-1}(\frac{10x + 6}{3}) is (α,β](\alpha, \beta], then

36α+β36|\alpha + \beta| is equal to :

A

72 (KTK2)

B

54

C

45

D

63

Answer

45

Explanation

Solution

To find the domain of the function f(x)=loge(4x2+11x+6)+sin1(4x+3)+cos1(10x+63)f(x) = \log_e (4x^2 + 11x + 6) + \sin^{-1}(4x + 3) + \cos^{-1}(\frac{10x + 6}{3}), we need to ensure that the arguments of each component function satisfy their respective domain conditions.

  1. Domain of loge(4x2+11x+6)\log_e (4x^2 + 11x + 6): The argument of a logarithm must be strictly positive. 4x2+11x+6>04x^2 + 11x + 6 > 0. To find the roots of the quadratic 4x2+11x+6=04x^2 + 11x + 6 = 0, we use the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: x=11±1124(4)(6)2(4)x = \frac{-11 \pm \sqrt{11^2 - 4(4)(6)}}{2(4)} x=11±121968x = \frac{-11 \pm \sqrt{121 - 96}}{8} x=11±258x = \frac{-11 \pm \sqrt{25}}{8} x=11±58x = \frac{-11 \pm 5}{8} The roots are x1=1158=168=2x_1 = \frac{-11 - 5}{8} = \frac{-16}{8} = -2 and x2=11+58=68=34x_2 = \frac{-11 + 5}{8} = \frac{-6}{8} = -\frac{3}{4}. Since the coefficient of x2x^2 is positive (4), the parabola opens upwards, so 4x2+11x+6>04x^2 + 11x + 6 > 0 when x<2x < -2 or x>34x > -\frac{3}{4}. Thus, D1=(,2)(34,)D_1 = (-\infty, -2) \cup (-\frac{3}{4}, \infty).

  2. Domain of sin1(4x+3)\sin^{-1}(4x + 3): The argument of sin1(u)\sin^{-1}(u) must be in the interval [1,1][-1, 1]. 14x+31-1 \le 4x + 3 \le 1. Subtract 3 from all parts: 134x13-1 - 3 \le 4x \le 1 - 3 44x2-4 \le 4x \le -2. Divide by 4: 44x24\frac{-4}{4} \le x \le \frac{-2}{4} 1x12-1 \le x \le -\frac{1}{2}. Thus, D2=[1,12]D_2 = [-1, -\frac{1}{2}].

  3. Domain of cos1(10x+63)\cos^{-1}(\frac{10x + 6}{3}): The argument of cos1(u)\cos^{-1}(u) must also be in the interval [1,1][-1, 1]. 110x+631-1 \le \frac{10x + 6}{3} \le 1. Multiply by 3: 310x+63-3 \le 10x + 6 \le 3. Subtract 6 from all parts: 3610x36-3 - 6 \le 10x \le 3 - 6 910x3-9 \le 10x \le -3. Divide by 10: 910x310\frac{-9}{10} \le x \le \frac{-3}{10}. Thus, D3=[910,310]D_3 = [-\frac{9}{10}, -\frac{3}{10}].

The domain of f(x)f(x) is the intersection of D1D_1, D2D_2, and D3D_3. D=D1D2D3D = D_1 \cap D_2 \cap D_3

Converting fractional endpoints to decimals for easier comparison: 34=0.75-\frac{3}{4} = -0.75 12=0.5-\frac{1}{2} = -0.5 910=0.9-\frac{9}{10} = -0.9 310=0.3-\frac{3}{10} = -0.3

The domains are: D1=(,2)(0.75,)D_1 = (-\infty, -2) \cup (-0.75, \infty) D2=[1,0.5]D_2 = [-1, -0.5] D3=[0.9,0.3]D_3 = [-0.9, -0.3]

First, find the intersection of D2D_2 and D3D_3: D2D3=[1,0.5][0.9,0.3]D_2 \cap D_3 = [-1, -0.5] \cap [-0.9, -0.3] The lower bound of the intersection is max(1,0.9)=0.9\max(-1, -0.9) = -0.9. The upper bound of the intersection is min(0.5,0.3)=0.5\min(-0.5, -0.3) = -0.5. So, D2D3=[0.9,0.5]D_2 \cap D_3 = [-0.9, -0.5].

Now, find the intersection of D1D_1 with [0.9,0.5][-0.9, -0.5]: D=((,2)(0.75,))[0.9,0.5]D = ((-\infty, -2) \cup (-0.75, \infty)) \cap [-0.9, -0.5] The interval [0.9,0.5][-0.9, -0.5] does not overlap with (,2)(-\infty, -2) because 0.5>2-0.5 > -2. Therefore, we only need to intersect [0.9,0.5][-0.9, -0.5] with (0.75,)(-0.75, \infty). The lower bound of this intersection is max(0.9,0.75)=0.75\max(-0.9, -0.75) = -0.75. Since 0.75-0.75 is excluded in D1D_1, it will be excluded in the intersection. The upper bound of this intersection is min(0.5,)=0.5\min(-0.5, \infty) = -0.5. Since 0.5-0.5 is included in [0.9,0.5][-0.9, -0.5], it will be included in the intersection. So, the domain of f(x)f(x) is (0.75,0.5](-0.75, -0.5].

Comparing this with the given form (α,β](\alpha, \beta], we have: α=0.75=34\alpha = -0.75 = -\frac{3}{4} β=0.5=12\beta = -0.5 = -\frac{1}{2}

We need to calculate 36α+β36|\alpha + \beta|. α+β=34+(12)=3424=54\alpha + \beta = -\frac{3}{4} + \left(-\frac{1}{2}\right) = -\frac{3}{4} - \frac{2}{4} = -\frac{5}{4} α+β=54=54|\alpha + \beta| = \left|-\frac{5}{4}\right| = \frac{5}{4} 36α+β=36×54=9×5=4536|\alpha + \beta| = 36 \times \frac{5}{4} = 9 \times 5 = 45.

The final answer is 45.