Question
Mathematics Question on Inverse Trigonometric Functions
If the domain of the function f(x)=sin−1(2x+3x−1) is R−(α,β), then 12αβ is equal to:
36
24
40
32
32
Solution
Step 1: Conditions for the domain of f(x) The argument of sin−1(x), 2x+3x−1, must satisfy two conditions:
- 2x+3=0 (denominator cannot be zero), so x=−23.
- 2x+3x−1≤1.
Step 2: Solve 2x+3x−1≤1 Split the inequality into two cases:
1. For 2x+3x−1≥−1:
x−1≥−(2x+3)⟹x−1≥−2x−3.
Simplify:
3x≥−2⟹x≥−32.
2. For 2x+3x−1≤1:
x−1≤2x+3⟹−x≤4.
Simplify:
x≥−4.
Thus, combining the results:
x∈[−4,−32] and exclude x=−23.
Step 3: Identify the excluded interval To exclude values where ∣2x+3∣≥∣x−1∣, note the critical points:
1. Solve ∣x−1∣=∣2x+3∣, which gives:
x=−4,x=−32.
Using these results and the behavior of the function, the domain of f(x) is:
x∈(−∞,−4]∪(−32,∞).
Step 4: Determine α and β From the excluded interval (−23,−32):
α=−4,β=−32.
Step 5: Compute 12αβ :
12αβ=12×(−4)×(−32).
Simplify:
12αβ=12×8/3=32.
Final Answer is Option (4): 32.