Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If the domain of the function f(x)=sin1(x12x+3)f(x) = \sin^{-1}\left( \frac{x - 1}{2x + 3} \right) is R(α,β)\mathbb{R} - (\alpha, \beta), then 12αβ12 \alpha \beta is equal to:

A

36

B

24

C

40

D

32

Answer

32

Explanation

Solution

Step 1: Conditions for the domain of f(x)f(x) The argument of sin1(x)\sin^{-1}(x), x12x+3\frac{x-1}{2x+3}, must satisfy two conditions:

  1. 2x+302x + 3 \neq 0 (denominator cannot be zero), so x32x \neq -\frac{3}{2}.
  2. x12x+31\left| \frac{x-1}{2x+3} \right| \leq 1.

Step 2: Solve x12x+31\left| \frac{x-1}{2x+3} \right| \leq 1 Split the inequality into two cases:

1. For x12x+31\frac{x-1}{2x+3} \geq -1:

x1(2x+3)    x12x3x-1 \geq -(2x+3) \implies x-1 \geq -2x-3.

Simplify:

3x2    x233x \geq -2 \implies x \geq -\frac{2}{3}.

2. For x12x+31\frac{x-1}{2x+3} \leq 1:

x12x+3    x4x-1 \leq 2x+3 \implies -x \leq 4.

Simplify:

x4x \geq -4.

Thus, combining the results:

x[4,23]x \in [-4, -\frac{2}{3}] and exclude x=32x = -\frac{3}{2}.

Step 3: Identify the excluded interval To exclude values where 2x+3x1|2x+3| \geq |x-1|, note the critical points:

1. Solve x1=2x+3|x-1| = |2x+3|, which gives:

x=4,  x=23x = -4, \; x = -\frac{2}{3}.

Using these results and the behavior of the function, the domain of f(x)f(x) is:

x(,4](23,)x \in (-\infty, -4] \cup \left(-\frac{2}{3}, \infty\right).

Step 4: Determine α\alpha and β\beta From the excluded interval (32,23)\left(-\frac{3}{2}, -\frac{2}{3}\right):

α=4,  β=23\alpha = -4, \; \beta = -\frac{2}{3}.

Step 5: Compute 12αβ12\alpha\beta :

12αβ=12×(4)×(23)12\alpha\beta = 12 \times (-4) \times \left(-\frac{2}{3}\right).

Simplify:

12αβ=12×8/3=3212\alpha\beta = 12 \times 8/3 = 32.

Final Answer is Option (4): 32.