Solveeit Logo

Question

Mathematics Question on Relations and functions

If the domain of the function f(x)=loge(2x+34x2+x3)+cos1(2x1x+2)f(x) = \log_e \left( \frac{2x + 3}{4x^2 + x - 3} \right) + \cos^{-1} \left( \frac{2x - 1}{x + 2} \right) is (α,β](\alpha, \beta], then the value of 5β4α5\beta - 4\alpha is equal to

A

12

B

10

C

11

D

9

Answer

12

Explanation

Solution

Determine the domain for each part of f(x)f(x): Logarithmic Part: loge(2x+34x2+x3)\log_{e} \left( \frac{2x + 3}{4x^2 + x - 3} \right) requires
\frac{2x + 3}{4x^2 + x - 3} > 0\.
Critical points are x=32,x=1,x = -\frac{3}{2}, x = -1, and x=34x = \frac{3}{4}.
Solution: x(32,1)(34,)x \in \left( -\frac{3}{2}, -1 \right) \cup \left( \frac{3}{4}, \infty \right).

Inverse Cosine Part: cos1(2x1x+2)\cos^{-1} \left( \frac{2x - 1}{x + 2} \right) requires
12x1x+21.-1 \leq \frac{2x - 1}{x + 2} \leq 1.
Solution: x[13,3]x \in \left[ -\frac{1}{3}, 3 \right].
Intersection of Domains:
The combined domain is (34,3]\left( \frac{3}{4}, 3 \right], giving (α,β]=(34,3](\alpha, \beta] = \left( \frac{3}{4}, 3 \right].
Calculate 5β4α5\beta - 4\alpha: α=34,β=3\alpha = \frac{3}{4}, \beta = 3.

5β4α=5×34×34=153=12.5\beta - 4\alpha = 5 \times 3 - 4 \times \frac{3}{4} = 15 - 3 = 12.