Question
Mathematics Question on Relations and functions
If the domain of the function f(x)=loge(4x2+x−32x+3)+cos−1(x+22x−1) is (α,β], then the value of 5β−4α is equal to
A
12
B
10
C
11
D
9
Answer
12
Explanation
Solution
Determine the domain for each part of f(x): Logarithmic Part: loge(4x2+x−32x+3) requires
\frac{2x + 3}{4x^2 + x - 3} > 0\.
Critical points are x=−23,x=−1, and x=43.
Solution: x∈(−23,−1)∪(43,∞).
Inverse Cosine Part: cos−1(x+22x−1) requires
−1≤x+22x−1≤1.
Solution: x∈[−31,3].
Intersection of Domains:
The combined domain is (43,3], giving (α,β]=(43,3].
Calculate 5β−4α: α=43,β=3.
5β−4α=5×3−4×43=15−3=12.