Solveeit Logo

Question

Mathematics Question on Limits

If the domain of the function f(x)=x225(4x2)+log10(x2+2x15)f(x) = \frac{\sqrt{x^2 - 25}}{(4 - x^2)} + \log_{10}(x^2 + 2x - 15)is (,α)[β,)(-\infty, \alpha) \cup [\beta, \infty), then α2+β3\alpha^2 + \beta^3 is equal to:

A

140

B

175

C

150

D

125

Answer

150

Explanation

Solution

To find the domain of the function, we consider the restrictions imposed by each term separately.

Step 1: Analyzing x2254x2\frac{\sqrt{x^2 - 25}}{4 - x^2}

The term x225\sqrt{x^2 - 25} requires:
x2250    x225    x5 or x5x^2 - 25 \geq 0 \implies x^2 \geq 25 \implies x \leq -5 \text{ or } x \geq 5

The term 14x2\frac{1}{4 - x^2} requires:
4x20    x24    x±24 - x^2 \neq 0 \implies x^2 \neq 4 \implies x \neq \pm 2

Combining these conditions:
x5 or x5x \leq -5 \text{ or } x \geq 5

Step 2: Analyzing log10(x2+2x15)\log_{10}(x^2 + 2x - 15)
For the logarithmic term to be defined:
x^2 + 2x - 15 $>$ 0

Factoring the quadratic:
(x + 5)(x - 3) $>$ 0

Using the sign chart for this inequality:
x(,5)(3,)x \in (-\infty, -5) \cup (3, \infty)

Step 3: Combining the Conditions
The overall domain of f(x)f(x) is given by the intersection of the two sets of conditions:
x(,5)[5,)x \in (-\infty, -5) \cup [5, \infty)

Thus, α=5\alpha = -5 and β=5\beta = 5.

Calculating α2+β3\alpha^2 + \beta^3
α2+β3=(5)2+53=25+125=150\alpha^2 + \beta^3 = (-5)^2 + 5^3 = 25 + 125 = 150

Conclusion: α2+β3=150\alpha^2 + \beta^3 = 150.