Solveeit Logo

Question

Mathematics Question on Functions

If the domain of the function f(x)=cos1(2x4)+(loge(3x))1f(x) = \cos^{-1} \left( \frac{2 - |x|}{4} \right) + \left( \log_e (3 - x) \right)^{-1} is [α,β)γ[-\alpha, \beta) - \\{ \gamma \\}, then α+β+γ\alpha + \beta + \gamma is equal to:

A

12

B

9

C

11

D

8

Answer

11

Explanation

Solution

To find the domain of f(x)f(x), analyze each component individually.

For cos1(2x4)\cos^{-1} \left( \frac{2 - |x|}{4} \right) to be defined, 12x41-1 \leq \frac{2 - |x|}{4} \leq 1. Solving these inequalities:

12x41-1 \leq \frac{2 - |x|}{4} \leq 1

leads to x6|x| \leq 6, so x[6,6]x \in [-6, 6].

For (loge(3x))1(\log_e (3 - x))^{-1} to be defined, loge(3x)0\log_e (3 - x) \neq 0 and 3x>03 - x > 0.

  1. 3x>0x<33 - x > 0 \Rightarrow x < 3.
  2. loge(3x)0x2\log_e (3 - x) \neq 0 \Rightarrow x \neq 2 (since loge(3x)=0\log_e (3 - x) = 0 when x=2x = 2).

Combining these conditions, we have:

x[6,3)2x \in [-6, 3) - \\{2\\}

Thus, the domain is [α,β)γ[-\alpha, \beta) - \\{\gamma\\} where α=6\alpha = 6, β=3\beta = 3, and γ=2\gamma = 2.

α+β+γ=11\alpha + \beta + \gamma = 11