Solveeit Logo

Question

Question: If the distances from the origin to the centres of three circles \(x ^ { 2 } + y ^ { 2 } + 2 \lambd...

If the distances from the origin to the centres of three circles x2+y2+2λixc2=0(i=1,2,3)x ^ { 2 } + y ^ { 2 } + 2 \lambda _ { i } x - c ^ { 2 } = 0 ( i = 1,2,3 ) are in G.P. then the lengths of the tangents drawn to them from any point on the circle x2+y2=c2x ^ { 2 } + y ^ { 2 } = c ^ { 2 } are in

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

G.P.

Explanation

Solution

The centre of the given circles are (λi,0)(i=1,2,3)\left( - \lambda _ { i } , 0 \right) ( i = 1,2,3 )

The distances from the origin to the centre are λi(i=1,2,3)\lambda _ { i } ( i = 1,2,3 ) It is given that

Let P(h,k)P ( h , k ) be any point on the circle x2+y2=c2x ^ { 2 } + y ^ { 2 } = c ^ { 2 }, then,h2+k2=c2h ^ { 2 } + k ^ { 2 } = c ^ { 2 }

Now, LiL _ { i } = length of the tangent from (h, k) to

x2+y2+2λixc2=0x ^ { 2 } + y ^ { 2 } + 2 \lambda _ { i } x - c ^ { 2 } = 0 =h2+k2+2λihc2= \sqrt { h ^ { 2 } + k ^ { 2 } + 2 \lambda _ { i } h - c ^ { 2 } }

=c2+2λihc2\sqrt { c ^ { 2 } + 2 \lambda _ { i } h - c ^ { 2 } } [h2+k2=c2\left[ \because h ^ { 2 } + k ^ { 2 } = c ^ { 2 } \right. and i=1,2,3]\left. i = 1,2,3 \right]

Therefore, L22=2λ2h=2h(λ1λ3)L _ { 2 } ^ { 2 } = 2 \lambda _ { 2 } h = 2 h \left( \sqrt { \lambda _ { 1 } \lambda _ { 3 } } \right)

=2hλ12hλ3=L1L3= \sqrt { 2 h \lambda _ { 1 } } \sqrt { 2 h \lambda _ { 3 } } = L _ { 1 } L _ { 3 }. Hence, L1,L2,L3L _ { 1 } , L _ { 2 } , L _ { 3 } are in G.P