Solveeit Logo

Question

Question: If the distance of the point (1, 1,1) from the origin is half its distance from the plane \(x + y + ...

If the distance of the point (1, 1,1) from the origin is half its distance from the plane x+y+z+k=0x + y + z + k = 0, then k=k =

A

±3\pm 3

B

±6\pm 6

C

–3, 9

D

3,93, - 9 (e) 3, 9

Answer

3,93, - 9 (e) 3, 9

Explanation

Solution

Distance of the point (1,1,1) from origin =(1)2+(1)2+(1)2=3= \sqrt { ( 1 ) ^ { 2 } + ( 1 ) ^ { 2 } + ( 1 ) ^ { 2 } } = \sqrt { 3 }

Distance of the point (1,1,1) from x+y+z+k=0x + y + z + k = 0 is, ±(1)+(1)+(1)+k(1)2+(1)2+(1)2=±k+33\pm \frac { ( 1 ) + ( 1 ) + ( 1 ) + k } { \sqrt { ( 1 ) ^ { 2 } + ( 1 ) ^ { 2 } + ( 1 ) ^ { 2 } } } = \pm \frac { k + 3 } { \sqrt { 3 } }

According to question, 3=±12(k+33)\sqrt { 3 } = \pm \frac { 1 } { 2 } \left( \frac { k + 3 } { \sqrt { 3 } } \right)

6=±(k+3)6 = \pm ( k + 3 )k=3,9k = 3 , - 9 .