Solveeit Logo

Question

Question: If the distance of any point P from the point \(A(a + b,a - b)\) and \(B(a - b,a + b)\) are equal, t...

If the distance of any point P from the point A(a+b,ab)A(a + b,a - b) and B(ab,a+b)B(a - b,a + b) are equal, then the locus of P is.

A

xy=0x - y = 0

B

ax+by=0ax + by = 0

C

bxay=0bx - ay = 0

D

x+y=0x + y = 0

Answer

xy=0x - y = 0

Explanation

Solution

Let coordinate of point P is (x, y)

Given PA=PB(PA)2=(PB)2P A = P B \Rightarrow ( P A ) ^ { 2 } = ( P B ) ^ { 2 }

{x(a+b)}2+{y(ab)}2\Rightarrow \{ x - ( a + b ) \} ^ { 2 } + \{ y - ( a - b ) \} ^ { 2 }

={x(ab)}2+{y(a+b)}2= \{ x - ( a - b ) \} ^ { 2 } + \{ y - ( a + b ) \} ^ { 2 }

2x[ab+ab]+2y[a+b+a+b]=0\Rightarrow 2 x [ - a - b + a - b ] + 2 y [ - a + b + a + b ] = 0

x(2b)+y(2b)=0\Rightarrow x ( - 2 b ) + y ( 2 b ) = 0 x+y=0xy=0\Rightarrow - x + y = 0 \Rightarrow x - y = 0.