Solveeit Logo

Question

Mathematics Question on Angle between Two Planes

If the distance between the plane αx-2y+z=k and the plane containing the lines x12=y23=z34\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} and x23=y34=z45\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5} is 6\sqrt{6}, then|k| is :

A

36

B

12

C

6

D

23\sqrt3

Answer

6

Explanation

Solution

The correct answer is option (C) : 6
vector (n1×n2n_1\times n_2)=|(vector i, vector j, vector k),(2,3,4),(3,4,5)|=-vector i+2vectorj-vector k
n1ˉ×n2ˉ=ijk 234 345=i+2jk\bar{n_1}\times \bar{n_2}=\begin{vmatrix} \vec{i} &\vec{j} &\vec{k} \\\ 2&3 &4 \\\ 3&4 &5 \end{vmatrix}=-\vec{i}+2\vec{j}-\vec{k}
Hence the equation of the plane containing the given lines is
-1(x-1)+2(y-2)-1(z-3)=0
\Rightarrow x-2y+z=0
If a=1, The distance between the plane is d12+22+12=6\frac{|d|}{\sqrt{1^2+2^2+1^2}}=\sqrt6
Thus |d|=6