Solveeit Logo

Question

Question: If the distance between the plane \[Ax - 2y + z = d\] and the plane containing the lines \[\dfrac{{x...

If the distance between the plane Ax2y+z=dAx - 2y + z = d and the plane containing the lines x12=y23=z34\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4} and x23=y34=z45\dfrac{{x - 2}}{3} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{5} is 6\sqrt 6 , then the value of d\left| d \right| is
A. 3
B. 4
C. 5
D. 6

Explanation

Solution

First of all, find the equation of the plane in which the given two lines are containing. Then use the formula that the distance between the two planes a1x+b1y+c1z=d1{a_1}x + {b_1}y + {c_1}z = {d_1} and a2x+b2y+c2z=d2{a_2}x + {b_2}y + {c_2}z = {d_2} is given by d2d1a12+b12+c12\dfrac{{\left| {{d_2} - {d_1}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} }} to get the required answer.

Complete step-by-step answer :
Let the given plane equation is P1:Ax2y+z=d{P_1}:Ax - 2y + z = d
Let P2{P_2} be the equation of the plane containing the lines x12=y23=z34\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4} and x23=y34=z45\dfrac{{x - 2}}{3} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{5}.
We know that the plane equation containing the lines xx1p1=yy1p2=zz1p3\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}} and xx2q1=yy2q2=zz2q3\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}} is given by \left| {\begin{array}{*{20}{c}} {x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\\ {{p_1}}&{{p_2}}&{{p_3}} \\\ {{q_1}}&{{q_2}}&{{q_3}} \end{array}} \right| = 0 or \left| {\begin{array}{*{20}{c}} {x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\\ {{p_1}}&{{p_2}}&{{p_3}} \\\ {{q_1}}&{{q_2}}&{{q_3}} \end{array}} \right| = 0.
So, the equation of plane P2{P_2} is given by

{x - 1}&{y - 2}&{z - 3} \\\ 2&3&4 \\\ 3&4&5 \end{array}} \right| = 0$$ Opening the determinant, we have

\Rightarrow \left( {x - 1} \right)\left[ {3 \times 5 - 4 \times 4} \right] - \left( {y - 2} \right)\left[ {2 \times 5 - 3 \times 4} \right] + \left( {z - 3} \right)\left[ {2 \times 4 - 3 \times 3} \right] = \\
\Rightarrow \left( {x - 1} \right)\left( {15 - 16} \right) - \left( {y - 2} \right)\left( {10 - 12} \right) + \left( {z - 3} \right)\left( {8 - 9} \right) = 0 \\
\Rightarrow - \left( {x - 1} \right) + 2\left( {y - 2} \right) - \left( {z - 3} \right) = 0 \\
\Rightarrow - x + 1 + 2y - 4 - z + 3 = 0 \\
\therefore {P_2}:x - 2y + z = 0 \\

We know that the distance between the two planes $${a_1}x + {b_1}y + {c_1}z = {d_1}$$ and $${a_2}x + {b_2}y + {c_2}z = {d_2}$$ is given by $$\dfrac{{\left| {{d_2} - {d_1}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} }}$$. Given that the distance between the two planes $${P_1}\& {P_2}$$ is $$\sqrt 6 $$. So, we have

\Rightarrow \sqrt 6 = \dfrac{{\left| {d - 0} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {1^2}} }} \\
\Rightarrow \sqrt 6 = \dfrac{{\left| d \right|}}{{\sqrt {1 + 4 + 1} }} \\
\Rightarrow \sqrt 6 \times \sqrt 6 = \left| d \right| \\
\therefore \left| d \right| = 6 \\

Thus, the correct option is D. 6 **Note** : The plane equation containing the lines $$\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}$$ and $$\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}$$ is given by $$\left| {\begin{array}{*{20}{c}} {x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\\ {{p_1}}&{{p_2}}&{{p_3}} \\\ {{q_1}}&{{q_2}}&{{q_3}} \end{array}} \right| = 0$$ or $$\left| {\begin{array}{*{20}{c}} {x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\\ {{p_1}}&{{p_2}}&{{p_3}} \\\ {{q_1}}&{{q_2}}&{{q_3}} \end{array}} \right| = 0$$.