Question
Question: If the distance between the plane \[Ax - 2y + z = d\] and the plane containing the lines \[\dfrac{{x...
If the distance between the plane Ax−2y+z=d and the plane containing the lines 2x−1=3y−2=4z−3 and 3x−2=4y−3=5z−4 is 6, then the value of ∣d∣ is
A. 3
B. 4
C. 5
D. 6
Solution
First of all, find the equation of the plane in which the given two lines are containing. Then use the formula that the distance between the two planes a1x+b1y+c1z=d1 and a2x+b2y+c2z=d2 is given by a12+b12+c12∣d2−d1∣ to get the required answer.
Complete step-by-step answer :
Let the given plane equation is P1:Ax−2y+z=d
Let P2 be the equation of the plane containing the lines 2x−1=3y−2=4z−3 and 3x−2=4y−3=5z−4.
We know that the plane equation containing the lines p1x−x1=p2y−y1=p3z−z1 and q1x−x2=q2y−y2=q3z−z2 is given by \left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\\
{{p_1}}&{{p_2}}&{{p_3}} \\\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0 or \left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\\
{{p_1}}&{{p_2}}&{{p_3}} \\\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0.
So, the equation of plane P2 is given by
\Rightarrow \left( {x - 1} \right)\left[ {3 \times 5 - 4 \times 4} \right] - \left( {y - 2} \right)\left[ {2 \times 5 - 3 \times 4} \right] + \left( {z - 3} \right)\left[ {2 \times 4 - 3 \times 3} \right] = \\
\Rightarrow \left( {x - 1} \right)\left( {15 - 16} \right) - \left( {y - 2} \right)\left( {10 - 12} \right) + \left( {z - 3} \right)\left( {8 - 9} \right) = 0 \\
\Rightarrow - \left( {x - 1} \right) + 2\left( {y - 2} \right) - \left( {z - 3} \right) = 0 \\
\Rightarrow - x + 1 + 2y - 4 - z + 3 = 0 \\
\therefore {P_2}:x - 2y + z = 0 \\
\Rightarrow \sqrt 6 = \dfrac{{\left| {d - 0} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {1^2}} }} \\
\Rightarrow \sqrt 6 = \dfrac{{\left| d \right|}}{{\sqrt {1 + 4 + 1} }} \\
\Rightarrow \sqrt 6 \times \sqrt 6 = \left| d \right| \\
\therefore \left| d \right| = 6 \\