Solveeit Logo

Question

Question: If the distance between the parallel lines given by the equation $x^2 + 4xy + py^2 + 3x + qy - 4 = 0...

If the distance between the parallel lines given by the equation x2+4xy+py2+3x+qy4=0x^2 + 4xy + py^2 + 3x + qy - 4 = 0 is λ\lambda, then λ2=\lambda^2 =

A

5

B

5\sqrt{5}

C

25

D

95\frac{9}{5}

Answer

5

Explanation

Solution

Solution:

For the given quadratic to represent two parallel lines, the quadratic part must be a perfect square. Write

x2+4xy+py2=(x+2y)2=  x2+4xy+4y2.x^2+4xy+py^2=(x+2y)^2=\;x^2+4xy+4y^2.

Thus, we require

p=4.p=4.

The equation becomes

(x+2y)2+3x+qy4=0.(x+2y)^2+3x+qy-4=0.

Express 3x+qy3x+qy in terms of (x+2y)(x+2y). Write the equation in factorized form:

(x+2y+k1)(x+2y+k2)=0.(x+2y+k_1)(x+2y+k_2)=0.

Expanding,

(x+2y)2+(k1+k2)(x+2y)+k1k2=0.(x+2y)^2+(k_1+k_2)(x+2y)+k_1k_2=0.

Comparing with the original equation, we have:

k1+k2=3andk1k2=4.k_1+k_2=3 \quad \text{and} \quad k_1k_2=-4.

The two lines are:

x+2y+k1=0andx+2y+k2=0.x+2y+k_1=0 \quad \text{and} \quad x+2y+k_2=0.

The distance between parallel lines L1:x+2y+c1=0L_1: x+2y+c_1=0 and L2:x+2y+c2=0L_2: x+2y+c_2=0 is given by:

λ=c1c212+22=c1c25.\lambda = \frac{|c_1-c_2|}{\sqrt{1^2+2^2}} = \frac{|c_1-c_2|}{\sqrt{5}}.

Noting that c1c2=(k1k2)2|c_1-c_2|=\sqrt{(k_1-k_2)^2} and using the identity

(k1k2)2=(k1+k2)24k1k2,(k_1-k_2)^2 = (k_1+k_2)^2-4k_1k_2,

we substitute k1+k2=3k_1+k_2=3 and k1k2=4k_1k_2=-4:

(k1k2)2=324(4)=9+16=25.(k_1-k_2)^2 = 3^2 - 4(-4) = 9+16 = 25.

Thus,

k1k2=5,|k_1-k_2| = 5, λ=55=5λ2=5.\lambda = \frac{5}{\sqrt{5}} = \sqrt{5}\quad \Rightarrow\quad \lambda^2=5.

Answer: Option (A) 5


Explanation (minimal):

  • Require p=4p=4 for a perfect square: (x+2y)2(x+2y)^2.
  • Factorize to (x+2y+k1)(x+2y+k2)=0(x+2y+k_1)(x+2y+k_2)=0 with k1+k2=3k_1+k_2=3 and k1k2=4k_1k_2=-4.
  • Compute k1k2=25=5|k_1-k_2|=\sqrt{25}=5.
  • Distance λ=55=5\lambda=\frac{5}{\sqrt{5}}=\sqrt{5} so λ2=5\lambda^2=5.