Solveeit Logo

Question

Mathematics Question on applications of integrals

If the distance between the foci of an ellipse is equal to the length of the latus rectum, then its eccentricity is

A

14(51)\frac{1}{4}\left(\sqrt{5}-1\right)

B

12(5+1)\frac{1}{2}\left(\sqrt{5}+1\right)

C

12(51)\frac{1}{2}\left(\sqrt{5}-1\right)

D

14(5+1)\frac{1}{4}\left(\sqrt{5}+1\right)

Answer

12(51)\frac{1}{2}\left(\sqrt{5}-1\right)

Explanation

Solution

Given, In ellipse the distance between the foci = Length of the latusrectum 2ae=2b2a\Rightarrow 2 a e=\frac{2 b^{2}}{a} a2θ=b2\Rightarrow a^{2} \theta=b^{2} e=b2a2 \Rightarrow e=\frac{b^{2}}{a^{2}}....(i) e2=1b2a2\because e^{2}=1-\frac{b^{2}}{a^{2}} e2=1e\Rightarrow e^{2}=1-e \quad [from E (i)] e2+e1=0\Rightarrow e^{2}+e-1=0 θ=1±1+42\Rightarrow \theta=\frac{-1 \pm \sqrt{1+4}}{2} (by quadratic formula) e=1±52\Rightarrow e=\frac{-1 \pm \sqrt{5}}{2} e=512(1>e>0)\Rightarrow e=\frac{\sqrt{5}-1}{2} (\because 1 > e > 0)