Solveeit Logo

Question

Question: If the direction ratio of two lines are given by <img src="https://cdn.pureessence.tech/canvas_596.p...

If the direction ratio of two lines are given by and l+2m+3n=0l + 2 m + 3 n = 0 , then the angle between the lines is

A

π2\frac { \pi } { 2 }

B

π3\frac { \pi } { 3 }

C

π4\frac { \pi } { 4 }

D

π6\frac { \pi } { 6 }

Answer

π2\frac { \pi } { 2 }

Explanation

Solution

We have, l+2m+3n=0l + 2 m + 3 n = 0 ……(i)

……(ii)

From equation (i), l=(2m+3n)l = - ( 2 m + 3 n )

Putting the value of l in equation (ii)

3(2m3n)m+mn4(2m3n)n=03 ( - 2 m - 3 n ) m + m n - 4 ( - 2 m - 3 n ) n = 0

6m29mn+mn+8mn+12n2=0- 6 m ^ { 2 } - 9 m n + m n + 8 m n + 12 n ^ { 2 } = 06m212n2=06 m ^ { 2 } - 12 n ^ { 2 } = 0

m22n2=0m ^ { 2 } - 2 n ^ { 2 } = 0

m+2n=0m + \sqrt { 2 } n = 0 or m2n=0m - \sqrt { 2 } n = 0

l+2m+3n=0l + 2 m + 3 n = 0 ……(i)

0.l+m+2n=00 . l + m + \sqrt { 2 } n = 0 ……(iii)

0.l+m2n=00 . l + m - \sqrt { 2 } n = 0 ……(iv)

From equation (i) and equation (iii), l223=m2=n1\frac { l } { 2 \sqrt { 2 } - 3 } = \frac { m } { - \sqrt { 2 } } = \frac { n } { 1 }

From equation (i) and equation (iv), l223=m2=n1\frac { l } { - 2 \sqrt { 2 } - 3 } = \frac { m } { \sqrt { 2 } } = \frac { n } { 1 }

Thus, the direction ratios of two lines are 223,2,12 \sqrt { 2 } - 3 , - \sqrt { 2 } , 1 and 223,2,1- 2 \sqrt { 2 } - 3 , \sqrt { 2 } , 1

(l1,m1,n1)=(223,2,1)\left( l _ { 1 } , m _ { 1 } , n _ { 1 } \right) = ( 2 \sqrt { 2 } - 3 , - \sqrt { 2 } , 1 ) (l2,m2,n2)=(223,2,1)\left( l _ { 2 } , m _ { 2 } , n _ { 2 } \right) = ( - 2 \sqrt { 2 } - 3 , \sqrt { 2 } , 1 ),

l1l2+m1m2+n1n2=0l _ { 1 } l _ { 2 } + m _ { 1 } m _ { 2 } + n _ { 1 } n _ { 2 } = 0.Hence, the angle between them π/2.