Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the direction cosines of a vector of magnitude 33 are 23,a3,23,a>0,\frac{2}{3},\frac{-a}{3},\frac{2}{3}, a>0, then the vector is

A

2i^+j^+2k^2\hat{i} +\hat{j} +2\hat{k}

B

2i^j^+2k^2\hat{i} -\hat{j} +2\hat{k}

C

i^j^+2k^\hat{i} -\hat{j} +2\hat{k}

D

i^+2j^+2k^\hat{i} +2\hat{j} +2\hat{k}

Answer

2i^j^+2k^2\hat{i} -\hat{j} +2\hat{k}

Explanation

Solution

Given, direction cosines are 23,a3,23\frac{2}{3},-\frac{a}{3}, \frac{2}{3}.
Then, direction ratios are 2,a,22,-a, 2.
According to the question,
3=22+(a)2+223=\sqrt{2^{2}+(-a)^{2}+2^{2}}
9=8+a29=8+a^{2}
a2=1a=±1a^{2}=1 \Rightarrow a=\pm 1
a=1[a>0]\Rightarrow a=1 \,\,\,[\because a>0]
So, the required vector is 2i^j^+2k^2 \hat{ i }-\hat{ j }+2 \hat{ k }.