Question
Mathematics Question on Vector Algebra
If the direction cosines of a vector of magnitude 3 are 32,3−a,32,a>0, then the vector is
A
2i^+j^+2k^
B
2i^−j^+2k^
C
i^−j^+2k^
D
i^+2j^+2k^
Answer
2i^−j^+2k^
Explanation
Solution
Given, direction cosines are 32,−3a,32.
Then, direction ratios are 2,−a,2.
According to the question,
3=22+(−a)2+22
9=8+a2
a2=1⇒a=±1
⇒a=1[∵a>0]
So, the required vector is 2i^−j^+2k^.