Question
Question: If the digits at ten’s and hundred’s places in \({\left( {11} \right)^{2016}}\) are x and y respecti...
If the digits at ten’s and hundred’s places in (11)2016 are x and y respectively, then the ordered pair (x, y) is equal to-
A.(1,6)
B.(6,1)
C.(8,1)
D.(1,8)
Solution
We can use expression of binomial theorem which is given as-
⇒(x+a)n=nC0xna0+nC1xn−1a1+...+nCnxn−nan Where,nCr=r!n−r!n! and n is positive integral.
Take out the common terms in the expression and solve to find the value of x and y.
Complete step-by-step answer:
Given, the ten’s digit in (11)2016=x
And the one’s digit in (11)2016=y
We have to find the value of ordered pair (x, y)
We can write (11)2016=(10+1)2016 -- (i)
Now using expression of binomial theorem-
⇒(x+a)n=nC0xna0+nC1xn−1a1+...+nCnxn−nan Where,nCr=r!n−r!n! and n is positive integral.
On putting the values in formula we get,
⇒(11)2016=(10+1)2016=2016C0.102016+2016C1.102016−111+...+2016C2014.102016−201412014+2016C2015.102016−201512015+2016C2016.102016−201612016 On simplifying we get,
⇒(11)2016=(10+1)2016=2016C0.102016+2016C1.102015+...+2016C2014.102+2016C2015.10+2016C2016
We know that nC0=nCn=1
Then on applying this in the above equation, we get
⇒(11)2016=(10+1)2016=102016+2016C1.102015+...+2016C2014.102+2016C2015.10+1
On using formula nCr=r!n−r!n!
We get,
⇒(11)2016=(10+1)2016=102016+2015!2016!.102015+...+2014!22016!.102+2015!2016!.10+1
On taking 103 common from every term except last three term (as it is not common in them) we get,
⇒(11)2016=(10+1)2016=103λ+(22016×2015)×102+(2016×10)+1 -- (ii)
Where λ=102013+2015!2016!.102012+...+2013!3!2016!
On solving eq. (i) further, we get
⇒(11)2016=(10+1)2016=103λ+(2015×1008)×100+20160+1
On multiplication we get,
⇒(11)2016=(10+1)2016=103λ+2,031,120×100+20161
⇒(11)2016=(10+1)2016=103λ+203,112,000+20161
On adding the last two terms we get,
⇒(11)2016=(10+1)2016=103λ+203,122,161 -- (iii)
Here since the first term is multiple of 103 so this means that whatever the value of λ be, it will not affect the last three digits of the second term when added to it.
So the hundred’s ten’s and one’s digits are fixed. And it was given that the ten’s digit is x and one’s digit is y, then
⇒x=6 and
⇒y=1
So the ordered pair (x, y) will be (6,1)
Hence, the correct answer is ‘B’.
Note: In this question if we exchange the place of 10 and 1 in eq. (i), and then apply the binomial theorem and solve in the same method as above, the terms of the equation (iii) will also be exchanged. The answer we will get will be the same.